
Ferenda Documentation
Release 0.3.1.dev1

Staffan Malmgren

Nov 22, 2018

Contents

1 Introduction to Ferenda 3
1.1 Example . 3
1.2 Prerequisites . 5
1.3 Installing . 5
1.4 Features . 6
1.5 Next step . 6

2 First steps 7
2.1 Creating a Document repository class . 8
2.2 Using ferenda-build.py and registering docrepo classes . 8
2.3 Downloading . 9
2.4 Parsing . 10
2.5 Republishing the parsed content . 12

3 Creating your own document repositories 17
3.1 Writing your own download implementation . 17
3.2 Writing your own parse implementation . 21
3.3 Calling relate() . 27
3.4 Calling makeresources() . 27
3.5 Customizing generate() . 28
3.6 Customizing toc() . 33
3.7 Customizing news() . 34
3.8 Customizing frontpage() . 34
3.9 Next steps . 35

4 Key concepts 37
4.1 Project . 37
4.2 Configuration . 37
4.3 DocumentRepository . 40
4.4 Document . 40
4.5 Identifiers . 40
4.6 DocumentEntry . 41
4.7 File storage . 41
4.8 Resources and the loadpath . 43

5 Parsing and representing document metadata 45
5.1 Document URI . 45

i

5.2 Adding metadata using the RDFLib API . 45
5.3 A simpler way of adding metadata . 46
5.4 Vocabularies . 46
5.5 Serialization of metadata . 47
5.6 Metadata about parts of the document . 47

6 Building structured documents 49
6.1 Creating your own element classes . 50
6.2 Mixin classes . 50
6.3 Rendering to XHTML . 50
6.4 Convenience methods . 51

7 Parsing document structure 53
7.1 FSMParser . 53
7.2 A simple example . 54
7.3 Writing complex parsers . 56
7.4 Tips for debugging your parser . 57

8 Citation parsing 59
8.1 The built-in solution . 59
8.2 Extending the built-in support . 60
8.3 Rolling your own . 62

9 Reading files in various formats 63
9.1 Reading plain text files . 63
9.2 Microsoft Word documents . 63
9.3 PDF documents . 63

10 Grouping documents with facets 65
10.1 Applying facets . 65
10.2 Selectors and identificators . 65
10.3 Contexts where facets are used . 66
10.4 Grouping a document in several groups . 66
10.5 Combining facets from different docrepos . 67

11 Customizing the table(s) of content 69
11.1 Defining facets for grouping and sorting . 69
11.2 Getting information about all documents . 70
11.3 Making the TOC pages . 70
11.4 The first page . 71

12 Customizing the news feeds 73

13 The WSGI app 75
13.1 Running the web application . 75
13.2 URLs for retrieving resources . 76

14 The ReST API for querying 79
14.1 Free text queries . 79
14.2 Result lists . 79
14.3 Parameters . 80
14.4 Paging . 80
14.5 Statistics . 81
14.6 Ranges . 81
14.7 Support resources . 81

ii

14.8 Legacy mode . 82

15 Setting up external databases 83
15.1 Triple stores . 83
15.2 Fulltext search engines . 85

16 Testing your docrepo 87
16.1 Extra assert methods . 87
16.2 Creating parametric tests . 87
16.3 RepoTester . 88
16.4 Download tests . 88
16.5 Distill and parse tests . 89
16.6 Py23DocChecker . 89
16.7 testparser . 89

17 Advanced topics 91
17.1 Composite docrepos . 91
17.2 Patch files . 93
17.3 External annotations . 93
17.4 Keyword hubs . 93
17.5 Custom common data . 93
17.6 Custom ontologies . 94
17.7 Parallel processing . 94

18 API reference 97
18.1 Classes . 97
18.2 Modules . 152
18.3 Decorators . 163
18.4 Errors . 164
18.5 Document repositories . 166
18.6 Changes . 175

19 Indices and tables 183

Python Module Index 185

iii

iv

Ferenda Documentation, Release 0.3.1.dev1

Ferenda is a python library and framework for transforming unstructured document collections into structured Linked
Data. It helps with downloading documents, parsing them to add explicit semantic structure and RDF-based metadata,
finding relationships between documents, and republishing the results.

Contents 1

http://en.wikipedia.org/wiki/Linked_data
http://en.wikipedia.org/wiki/Linked_data

Ferenda Documentation, Release 0.3.1.dev1

2 Contents

CHAPTER 1

Introduction to Ferenda

Ferenda is a python library and framework for transforming unstructured document collections into structured Linked
Data. It helps with downloading documents, parsing them to add explicit semantic structure and RDF-based metadata,
finding relationships between documents, and republishing the results.

It uses the XHTML and RDFa standards for representing semantic structure, and republishes content using Linked
Data principles and a REST-based API.

Ferenda works best for large document collections that have some degree of internal standardization, such as the laws
of a particular country, technical standards, or reports published in a series. It is particularly useful for collections that
contains explicit references between documents, within or across collections.

It is designed to make it easy to get started with basic downloading, parsing and republishing of documents, and then
to improve each step incrementally.

1.1 Example

Ferenda can be used either as a library or as a command-line tool. This code uses the Ferenda API to create a website
containing all(*) RFCs and W3C recommended standards.

from ferenda.sources.tech import RFC, W3Standards
from ferenda.manager import makeresources, frontpage, runserver, setup_logger
from ferenda.errors import DocumentRemovedError, ParseError, FSMStateError

config = {'datadir':'netstandards/exampledata',
'loglevel':'DEBUG',
'force':False,
'storetype':'SQLITE',
'storelocation':'netstandards/exampledata/netstandards.sqlite',
'storerepository':'netstandards',
'downloadmax': 50 # remove this to download everything

}
setup_logger(level='DEBUG')

(continues on next page)

3

http://en.wikipedia.org/wiki/Linked_data
http://en.wikipedia.org/wiki/Linked_data

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

Set up two document repositories
docrepos = (RFC(**config), W3Standards(**config))

for docrepo in docrepos:
Download a bunch of documents
docrepo.download()

Parse all downloaded documents
for basefile in docrepo.store.list_basefiles_for("parse"):

try:
docrepo.parse(basefile)

except ParseError as e:
pass # or handle this in an appropriate way

Index the text content and metadata of all parsed documents
for basefile in docrepo.store.list_basefiles_for("relate"):

docrepo.relate(basefile, docrepos)

Prepare various assets for web site navigation
makeresources(docrepos,

resourcedir="netstandards/exampledata/rsrc",
sitename="Netstandards",
sitedescription="A repository of internet standard documents")

Relate for all repos must run before generate for any repo
for docrepo in docrepos:

Generate static HTML files from the parsed documents,
with back- and forward links between them, etc.
for basefile in docrepo.store.list_basefiles_for("generate"):

docrepo.generate(basefile)

Generate a table of contents of all available documents
docrepo.toc()
Generate feeds of new and updated documents, in HTML and Atom flavors
docrepo.news()

Create a frontpage for the entire site
frontpage(docrepos,path="netstandards/exampledata/index.html")

Start WSGI app at http://localhost:8000/ with navigation,
document viewing, search and API
runserver(docrepos, port=8000, documentroot="netstandards/exampledata")

Alternately, using the command line tools and the project framework:

$ ferenda-setup netstandards
$ cd netstandards
$./ferenda-build.py ferenda.sources.tech.RFC enable
$./ferenda-build.py ferenda.sources.tech.W3Standards enable
$./ferenda-build.py all all --downloadmax=50
$./ferenda-build.py all runserver &
$ open http://localhost:8000/

Note: (*) actually, it only downloads the 50 most recent of each. Downloading, parsing, indexing and re-generating

4 Chapter 1. Introduction to Ferenda

Ferenda Documentation, Release 0.3.1.dev1

close to 7000 RFC documents takes several hours. In order to process all documents, remove the downloadmax
configuration parameter/command line option, and be prepared to wait. You should also set up an external triple store
(see Triple stores) and an external fulltext search engine (see Fulltext search engines).

1.2 Prerequisites

Operating system Ferenda is tested and works on Unix, Mac OS and Windows.

Python Version 2.6 or newer required, 3.4 recommended. The code base is primarily developed with python 3, and
is heavily dependent on all forward compatibility features introduced in Python 2.6. Python 3.0 and 3.1 is not
supported.

Third-party libraries beautifulsoup4, rdflib, html5lib, lxml, requests, whoosh, pyparsing,
jsmin, six and their respective requirements. If you install ferenda using easy_install or pip they
should be installed automatically. If you’re working with a clone of the source repository you can install them
with a simple pip install -r requirements.py3.txt (substitute with requirements.py2.
txt if you’re not yet using python 3).

Command-line tools For some functionality, certain executables must be present and in your $PATH:

• PDFReader requires pdftotext and pdftohtml (from poppler, version 0.21 or newer).

– The crop() method requires convert (from ImageMagick).

– The convert_to_pdf parameter to read() requires the soffice binary from either OpenOf-
fice or LibreOffice

– The ocr_lang parameter to read() requires tesseract (from tesseract-ocr), convert (see
above) and tiffcp (from libtiff)

• WordReader requires antiword to handle old .doc files.

• TripleStore can perform some operations (bulk up- and download) much faster if curl is installed.

Once you have a large number of documents and metadata about those documents, you’ll need a RDF triple store,
either Sesame (at least version 2.7) or Fuseki (at least version 1.0). For document collections small enough to keep
all metadata in memory you can get by with only rdflib, using either a Sqlite or a Berkely DB (aka Sleepycat/bsddb)
backend. For further information, see Triple stores.

Similarly, once you have a large collection of text (either many short documents, or fewer long documents), you’ll need
an fulltext search engine to use the search feature (enabled by default). For small document collections the embedded
whoosh library is used. Right now, ElasticSearch is the only supported external fulltext search engine.

As a rule of thumb, if your document collection contains over 100 000 RDF triples or 100 000 words, you should start
thinking about setting up an external triple store or a fulltext search engine. See Fulltext search engines.

1.3 Installing

Ferenda should preferably be installed with pip (in fact, it’s the only method tested):

pip install ferenda

You should definitely consider installing ferenda in a virtualenv.

1.2. Prerequisites 5

http://poppler.freedesktop.org/
http://www.imagemagick.org/
https://code.google.com/p/tesseract-ocr/
http://www.libtiff.org/
http://www.winfield.demon.nl/
http://curl.haxx.se/
http://www.openrdf.org/
http://jena.apache.org/documentation/serving_data/index.html
https://bitbucket.org/mchaput/whoosh/wiki/Home
http://www.elasticsearch.org/
http://www.pip-installer.org/en/latest/installing.html
http://www.virtualenv.org/en/latest/

Ferenda Documentation, Release 0.3.1.dev1

Note: If you want to use the Sleepycat/bsddb backend for storing RDF data together with python 3, you need to
install the bsddb3 module. Even if you’re using python 2 on Mac OS X, you might need to install this module, as the
built-in bsddb module often has problems on this platform. It’s not automatically installed by easy_install/pip
as it has requirements of its own and is not essential.

On Windows, we recommend using a binary distribution of lxml. Unfortunately, at the time of writing, no such
official distribution is for Python 3.3 or later. However, the inofficial distributions available at http://www.lfd.uci.edu/
~gohlke/pythonlibs/#lxml has been tested with ferenda on python 3.3 and later, and seems to work great.

The binary distributions installs lxml into the system python library path. To make lxml available for your virtualenv,
use the --system-site-packages command line switch when creating the virtualenv.

1.4 Features

• Handles downloading, structural parsing and regeneration of large document collections.

• Contains libraries to make reading of plain text, MS Word and PDF documents (including scanned text) as easy
as HTML.

• Uses established information standards like XHTML, XSLT, XML namespaces, RDF and SPARQL as much as
possible.

• Leverages your favourite python libraries: requests, beautifulsoup, rdflib, lxml, pyparsing and whoosh.

• Handle errors in upstream sources by creating one-off patch files for individiual documents.

• Easy to write reference/citation parsers and run them on document text.

• Documents in the same and other collections are automatically cross-referenced.

• Uses caches and dependency management to avoid performing the same work over and over.

• Once documents are downloaded and structured, you get a usable web site with REST API, Atom feeds and
search for free.

• Web site generation can create a set of static HTML pages for offline use.

1.5 Next step

See First steps to set up a project and create your own simple document repository.

6 Chapter 1. Introduction to Ferenda

http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml
http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml
http://docs.python-requests.org/en/latest/
http://www.crummy.com/software/BeautifulSoup/
https://rdflib.readthedocs.org/en/latest/
http://lxml.de/
http://pyparsing.wikispaces.com/
https://bitbucket.org/mchaput/whoosh/wiki/Home

CHAPTER 2

First steps

Ferenda can be used in a project-like manner with a command-line tool (similar to how projects based on Django,
Sphinx and Scrapy are used), or it can be used programatically through a simple API. In this guide, we’ll primarily be
using the command-line tool, and then show how to achieve the same thing using the API.

The first step is to create a project. Lets make a simple website that contains published standards from W3C and
IETF, called “netstandards”. Ferenda installs a system-wide command-line tool called ferenda-setup whose sole
purpose is to create projects:

$ ferenda-setup netstandards
Prerequisites ok
Selected SQLITE as triplestore
Selected WHOOSH as search engine
Project created in netstandards
$ cd netstandards
$ ls
ferenda-build.py
ferenda.ini
wsgi.py

The three files created by ferenda-setup is another command line tool (ferenda-build.py) used for man-
agement of the newly created project, a WSGI application (wsgi.py, see The WSGI app) and a configuration file
(ferenda.ini). The default configuration file specifies most, but not all, of the available configuration parameters.
See Configuration for a full list of the standard configuration parameters.

Note: When using the API, you don’t create a project or deal with configuration files in the same way. Instead, your
client code is responsible for keeping track of which docrepos to use, and providing configuration when calling their
methods.

7

https://www.djangoproject.com/
http://sphinx-doc.org/
http://scrapy.org

Ferenda Documentation, Release 0.3.1.dev1

2.1 Creating a Document repository class

Any document collection is handled by a DocumentRepository class (or docrepo for short), so our first task is to create
a docrepo for W3C standards.

A docrepo class is responsible for downloading documents in a specific document collection. These classes can inherit
from DocumentRepository , which amongst others provides the method download() for this. Since the details
of how documents are made available on the web differ greatly from collection to collection, you’ll often have to
override the default implementation, but in this particular case, it suffices. The default implementation assumes that
all documents are available from a single index page, and that the URLs of the documents follow a set pattern.

The W3C standards are set up just like that: All standards are available at http://www.w3.org/TR/
tr-status-all. There are a lot of links to documents on that page, and not all of them are links to recommended
standards. A simple way to find only the recommended standards is to see if the link follows the pattern http://
www.w3.org/TR/<year>/REC-<standardid>-<date>.

Creating a docrepo that is able to download all web standards is then as simple as creating a subclass and setting
three class properties. Create this class in the current directory (or anywhere else on your python path) and save it as
w3cstandards.py

from ferenda import DocumentRepository

class W3CStandards(DocumentRepository):
alias = "w3c"
start_url = "http://www.w3.org/TR/tr-status-all"
document_url_regex = "http://www.w3.org/TR/(?P<year>\d{4})/REC-(?P<basefile>.*)-(?

→˓P<date>\d+)"

The first property, alias, is required for all docrepos and controls the alias used by the command line tool for that
docrepo, as well as the path where files are stored, amongst other things. If your project has a large collection of
docrepos, it’s important that they all have unique aliases.

The other two properties are parameters which the default implementation of download() uses in order to find
out which documents to download. start_url is just a simple regular URL, while document_url_regex is
a standard re regex with named groups. The group named basefile has special meaning, and will be used as a
base for stored files and elsewhere as a short identifier for the document. For example, the web standard found at URL
http://www.w3.org/TR/2012/REC-rdf-plain-literal-20121211/ will have the basefile rdf-plain-literal.

2.2 Using ferenda-build.py and registering docrepo classes

Next step is to enable our class. Like most tasks, this is done using the command line tool present in your project di-
rectory. To register the class (together with a short alias) in your ferenda.ini configuration file, run the following:

$./ferenda-build.py w3cstandards.W3CStandards enable
22:16:26 root INFO Enabled class w3cstandards.W3CStandards (alias 'w3c')

This creates a new section in ferenda.ini that just looks like the following:

[w3c]
class = w3cstandards.W3CStandards

From this point on, you can use the class name or the alias “w3c” interchangably:

8 Chapter 2. First steps

https://docs.python.org/3/library/re.html#module-re
http://www.w3.org/TR/2012/REC-rdf-plain-literal-20121211/

Ferenda Documentation, Release 0.3.1.dev1

$./ferenda-build.py w3cstandards.W3CStandards status # verbose
22:16:27 root INFO w3cstandards.W3CStandards status finished in 0.010 sec
Status for document repository 'w3c' (w3cstandards.W3CStandards)
download: None.
parse: None.
generated: None.

$./ferenda-build.py w3c status # terse, exactly the same result

Note: When using the API, there is no need (nor possibility) to register docrepo classes. Your client code directly
instantiates the class(es) it uses and calls methods on them.

2.3 Downloading

To test the downloading capabilities of our class, you can run the download method directly from the command line
using the command line tool:

$./ferenda-build.py w3c download
22:16:31 w3c INFO Downloading max 3 documents
22:16:32 w3c INFO emotionml: downloaded from http://www.w3.org/TR/2014/REC-emotionml-
→˓20140522/
22:16:33 w3c INFO MathML3: downloaded from http://www.w3.org/TR/2014/REC-MathML3-
→˓20140410/
22:16:33 w3c INFO xml-entity-names: downloaded from http://www.w3.org/TR/2014/REC-xml-
→˓entity-names-20140410/
and so on...

After a few minutes of downloading, the result is a bunch of files in data/w3c/downloaded:

$ ls -1 data/w3c/downloaded
MathML3.html
MathML3.html.etag
emotionml.html
emotionml.html.etag
xml-entity-names.html
xml-entity-names.html.etag

Note: The .etag files are created in order to support Conditional GET, so that we don’t waste our time or remote
server bandwith by re-downloading documents that hasn’t changed. They can be ignored and might go away in future
versions of Ferenda.

We can get a overview of the status of our docrepo using the status command:

$./ferenda-build.py w3cstandards.W3CStandards status # verbose
22:16:27 root INFO w3cstandards.W3CStandards status finished in 0.010 sec
Status for document repository 'w3c' (w3cstandards.W3CStandards)
download: None.
parse: None.
generated: None.

$./ferenda-build.py w3c status # terse, exactly the same result

2.3. Downloading 9

http://en.wikipedia.org/wiki/HTTP_ETag

Ferenda Documentation, Release 0.3.1.dev1

Note: To do the same using the API:

from w3cstandards import W3CStandards
repo = W3CStandards()
repo.download()
repo.status()
or use repo.get_status() to get all status information in a nested dict

Finally, if the logging information scrolls by too quickly and you want to read it again, take a look in the data/logs
directory. Each invocation of ferenda-build.py creates a new log file containing the same information that is
written to stdout.

2.4 Parsing

Let’s try the next step in the workflow, to parse one of the documents we’ve downloaded.

$./ferenda-build.py w3c parse rdfa-core
22:16:45 w3c INFO rdfa-core: parse OK (4.863 sec)
22:16:45 root INFO w3c parse finished in 4.935 sec

By now, you might have realized that our command line tool generally is called in the following manner:

$./ferenda-build.py <docrepo> <command> [argument(s)]

The parse command resulted in one new file being created in data/w3c/parsed.

$ ls -1 data/w3c/parsed
rdfa-core.xhtml

And we can again use the status command to get a comprehensive overview of our document repository.

$./ferenda-build.py w3c status
22:16:47 root INFO w3c status finished in 0.032 sec
Status for document repository 'w3c' (w3cstandards.W3CStandards)
download: xml-entity-names, rdfa-core, emotionml... (1 more)
parse: rdfa-core. Todo: xml-entity-names, emotionml, MathML3.
generated: None. Todo: rdfa-core.

Note that by default, subsequent invocations of parse won’t actually parse documents that don’t need parsing.

$./ferenda-build.py w3c parse rdfa-core
22:16:50 root INFO w3c parse finished in 0.019 sec

But during development, when you change the parsing code frequently, you’ll need to override this through the
--force flag (or set the force parameter in ferenda.ini).

$./ferenda-build.py w3c parse rdfa-core --force
22:16:56 w3c INFO rdfa-core: parse OK (5.123 sec)
22:16:56 root INFO w3c parse finished in 5.166 sec

Note: To do the same using the API:

10 Chapter 2. First steps

Ferenda Documentation, Release 0.3.1.dev1

from w3cstandards import W3CStandards
repo = W3CStandards(force=True)
repo.parse("rdfa-core")

Note also that you can parse all downloaded documents through the --all flag, and control logging verbosity by the
--loglevel flag.

$./ferenda-build.py w3c parse --all --loglevel=DEBUG
22:16:59 w3c DEBUG xml-entity-names: Starting
22:16:59 w3c DEBUG xml-entity-names: Created data/w3c/parsed/xml-entity-names.xhtml
22:17:00 w3c DEBUG xml-entity-names: 6 triples extracted to data/w3c/distilled/xml-
→˓entity-names.rdf
22:17:00 w3c INFO xml-entity-names: parse OK (0.717 sec)
22:17:00 w3c DEBUG emotionml: Starting
22:17:00 w3c DEBUG emotionml: Created data/w3c/parsed/emotionml.xhtml
22:17:01 w3c DEBUG emotionml: 11 triples extracted to data/w3c/distilled/emotionml.rdf
22:17:01 w3c INFO emotionml: parse OK (1.174 sec)
22:17:01 w3c DEBUG MathML3: Starting
22:17:01 w3c DEBUG MathML3: Created data/w3c/parsed/MathML3.xhtml
22:17:01 w3c DEBUG MathML3: 8 triples extracted to data/w3c/distilled/MathML3.rdf
22:17:01 w3c INFO MathML3: parse OK (0.332 sec)
22:17:01 root INFO w3c parse finished in 2.247 sec

Note: To do the same using the API:

import logging
from w3cstandards import W3CStandards
client code is responsible for setting the effective log level -- ferenda
just emits log messages, and depends on the caller to setup the logging
subsystem in an appropriate way
logging.getLogger().setLevel(logging.INFO)
repo = W3CStandards()
for basefile in repo.store.list_basefiles_for("parse"):

You you might want to try/catch the exception
ferenda.errors.ParseError or any of it's children here
repo.parse(basefile)

Note that the API makes you explicitly list and iterate over any available files. This is so that client code has the
opportunity to parallelize this work in an appropriate way.

If we take a look at the files created in data/w3c/distilled, we see some metadata for each document. This
metadata has been automatically extracted from RDFa statements in the XHTML documents, but is so far very spartan.

Now take a look at the files created in data/w3c/parsed. The default implementation of parse() processes the
DOM of the main body of the document, but some tags and attribute that are used only for formatting are stripped,
such as <style> and <script>.

These documents have quite a lot of “boilerplate” text such as table of contents and links to latest and previous versions
which we’d like to remove so that just the actual text is left (problem 1). And we’d like to explicitly extract some parts
of the document and represent these as metadata for the document – for example the title, the publication date, the
authors/editors of the document and it’s abstract, if available (problem 2).

Just like the default implementation of download() allowed for some customization using class variables, we can
solve problem 1 by setting two additional class variables:

2.4. Parsing 11

Ferenda Documentation, Release 0.3.1.dev1

parse_content_selector="body"
parse_filter_selectors=["div.toc", "div.head"]

The parse_content_selector member specifies, using CSS selector syntax, the part of the document which
contains our main text. It defaults to "body", and can often be set to ".content" (the first element that has
a class=”content” attribute”), "#main-text" (any element with the id "main-text"), "article" (the first
<article> element) or similar. The parse_filter_selectors is a list of similar selectors, with the difference
that all matching elements are removed from the tree. In this case, we use it to remove some boilerplate sections that
often within the content specified by parse_content_selector, but which we don’t want to appear in the final
result.

In order to solve problem 2, we can override one of the methods that the default implementation of parse() calls:

def parse_metadata_from_soup(self, soup, doc):
from rdflib import Namespace
from ferenda import Describer
from ferenda import util
import re
DCTERMS = Namespace("http://purl.org/dc/terms/")
FOAF = Namespace("http://xmlns.com/foaf/0.1/")
d = Describer(doc.meta, doc.uri)
d.rdftype(FOAF.Document)
d.value(DCTERMS.title, soup.find("title").text, lang=doc.lang)
d.value(DCTERMS.abstract, soup.find(True, "abstract"), lang=doc.lang)
find the issued date -- assume it's the first thing that looks
like a date on the form "22 August 2013"
re_date = re.compile(r'(\d+ \w+ \d{4})')
datenode = soup.find(text=re_date)
datestr = re_date.search(datenode).group(1)
d.value(DCTERMS.issued, util.strptime(datestr, "%d %B %Y"))
editors = soup.find("dt", text=re.compile("Editors?:"))
for editor in editors.find_next_siblings("dd"):

editor_name = editor.text.strip().split(", ")[0]
d.value(DCTERMS.editor, editor_name)

parse_metadata_from_soup() is called with a document object and the parsed HTML document in the form of
a BeautifulSoup object. It is the responsibility of parse_metadata_from_soup() to add document-level meta-
data for this document, such as it’s title, publication date, and similar. Note that parse_metadata_from_soup()
is run before the parse_content_selector and parse_filter_selectors are applied, so the Beautiful-
Soup object passed into it contains the entire document.

Note: The selectors are passed to BeautifulSoup.select(), which supports a subset of the CSS selector syntax. If you
stick with simple tag, id and class-based selectors you should be fine.

Now, if you run parse --force again, both documents and metadata are in better shape. Further down the line
the value of properly extracted metadata will become more obvious.

2.5 Republishing the parsed content

The XHTML contains metadata in RDFa format. As such, you can extract all that metadata and put it into a triple
store. The relate command does this, as well as creating a full text index of all textual content:

12 Chapter 2. First steps

http://www.w3.org/TR/CSS2/selector.html
http://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors

Ferenda Documentation, Release 0.3.1.dev1

$./ferenda-build.py w3c relate --all
22:17:03 w3c INFO xml-entity-names: relate OK (0.618 sec)
22:17:04 w3c INFO rdfa-core: relate OK (1.542 sec)
22:17:06 w3c INFO emotionml: relate OK (1.647 sec)
22:17:08 w3c INFO MathML3: relate OK (1.604 sec)
22:17:08 w3c INFO Dumped 34 triples from context http://localhost:8000/dataset/w3c to
→˓data/w3c/distilled/dump.nt (0.007 sec)
22:17:08 root INFO w3c relate finished in 5.555 sec

The next step is to create a number of resource files (placed under data/rsrc). These resource files include css and
javascript files for the new website we’re creating, as well as a xml configuration file used by the XSLT transformation
done by generate below:

$./ferenda-build.py w3c makeresources
22:17:08 ferenda.resources INFO Wrote data/rsrc/resources.xml
$ find data/rsrc -print
data/rsrc
data/rsrc/api
data/rsrc/api/common.json
data/rsrc/api/context.json
data/rsrc/api/terms.json
data/rsrc/css
data/rsrc/css/ferenda.css
data/rsrc/css/main.css
data/rsrc/css/normalize-1.1.3.css
data/rsrc/img
data/rsrc/img/navmenu-small-black.png
data/rsrc/img/navmenu.png
data/rsrc/img/search.png
data/rsrc/js
data/rsrc/js/ferenda.js
data/rsrc/js/jquery-1.10.2.js
data/rsrc/js/modernizr-2.6.3.js
data/rsrc/js/respond-1.3.0.js
data/rsrc/resources.xml

Note: It is possible to combine and minify both javascript and css files using the combineresources option in
the configuration file.

Running makeresources is needed for the final few steps.

$./ferenda-build.py w3c generate --all
22:17:14 w3c INFO xml-entity-names: generate OK (1.728 sec)
22:17:14 w3c INFO rdfa-core: generate OK (0.242 sec)
22:17:14 w3c INFO emotionml: generate OK (0.336 sec)
22:17:14 w3c INFO MathML3: generate OK (0.216 sec)
22:17:14 root INFO w3c generate finished in 2.535 sec

The generate command creates browser-ready HTML5 documents from our structured XHTML documents, using
our site’s navigation.

$./ferenda-build.py w3c toc
22:17:17 w3c INFO Created data/w3c/toc/dcterms_issued/2014.html
22:17:17 w3c INFO Created data/w3c/toc/dcterms_title/m.html
22:17:17 w3c INFO Created data/w3c/toc/dcterms_title/r.html

(continues on next page)

2.5. Republishing the parsed content 13

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

22:17:17 w3c INFO Created data/w3c/toc/dcterms_title/x.html
22:17:18 w3c INFO Created data/w3c/toc/index.html
22:17:18 root INFO w3c toc finished in 2.059 sec
$./ferenda-build.py w3c news
21:43:55 w3c INFO feed type/document: 4 entries
22:17:19 w3c INFO feed main: 4 entries
22:17:19 root INFO w3c news finished in 0.115 sec
$./ferenda-build.py w3c frontpage
22:17:21 root INFO frontpage: wrote data/index.html (0.112 sec)

The toc and feeds commands creates static files for general indexes/tables of contents of all documents in our
docrepo as well as Atom feeds, and the frontpage command creates a suitable frontpage for the site as a whole.

Note: To do all of the above using the API:

from ferenda import manager
from w3cstandards import W3CStandards
repo = W3CStandards()
for basefile in repo.store.list_basefiles_for("relate"):

repo.relate(basefile)
manager.makeresources([repo], sitename="Standards", sitedescription="W3C standards,
→˓in a new form")
for basefile in repo.store.list_basefiles_for("generate"):

repo.generate(basefile)
repo.toc()
repo.news()
manager.frontpage([repo])

Finally, to start a development web server and check out the finished result:

$./ferenda-build.py w3c runserver
$ open http://localhost:8080/

Now you’ve created your own web site with structured documents. It contains listings of all documents, feeds with
updated documents (in both HTML and Atom flavors), full text search, and an API. In order to deploy your site, you
can run it under Apache+mod_wsgi, ngnix+uWSGI, Gunicorn or just about any WSGI capable web server, see The
WSGI app.

Note: Using runserver() from the API does not really make any sense. If your environment supports running
WSGI applications, see the above link for information about how to get the ferenda WSGI application. Otherwise, the
app can be run by any standard WSGI host.

To keep it up-to-date whenever the W3C issues new standards, use the following command:

$./ferenda-build.py w3c all
22:17:25 w3c INFO Downloading max 3 documents
22:17:25 root INFO w3cstandards.W3CStandards download finished in 2.648 sec
22:17:25 root INFO w3cstandards.W3CStandards parse finished in 0.019 sec
22:17:25 root INFO w3cstandards.W3CStandards relate: Nothing to do!
22:17:25 root INFO w3cstandards.W3CStandards relate finished in 0.025 sec
22:17:25 ferenda.resources INFO Wrote data/rsrc/resources.xml
22:17:29 root INFO w3cstandards.W3CStandards generate finished in 0.006 sec
22:17:32 root INFO w3cstandards.W3CStandards toc finished in 3.376 sec

(continues on next page)

14 Chapter 2. First steps

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

22:17:34 w3c INFO feed type/document: 4 entries
22:17:32 w3c INFO feed main: 4 entries
22:17:32 root INFO w3cstandards.W3CStandards news finished in 0.063 sec
22:17:32 root INFO frontpage: wrote data/index.html (0.017 sec)

The “all” command is an alias that runs download, parse --all, relate --all, generate --all, toc
and feeds in sequence.

Note: The API doesn’t have any corresponding method. Just run all of the above code again. As long as you don’t
pass the force=True parameter when creating the docrepo instance, ferendas dependency management should make
sure that documents aren’t needlessly re-parsed etc.

This 20-line example of a docrepo took a lot of shortcuts by depending on the default implementation of the
download() and parse() methods. Ferenda tries to make it really to get something up and running quickly,
and then improving each step incrementally.

In the next section Creating your own document repositories we will take a closer look at each of the six main
steps (download, parse, relate, generate, toc and news), including how to completely replace the built-
in methods. You can also take a look at the source code for ferenda.sources.tech.W3Standards, which
contains a more complete (and substantially longer) implementation of download(), parse() and the others.

2.5. Republishing the parsed content 15

Ferenda Documentation, Release 0.3.1.dev1

16 Chapter 2. First steps

CHAPTER 3

Creating your own document repositories

The next step is to do more substantial adjustments to the download/parse/generate cycle. As the source for our next
docrepo we’ll use the collected RFCs, as published by IETF. These documents are mainly available in plain text format
(formatted for printing on a line printer), as is the document index itself. This means that we cannot rely on the default
implementation of download and parse. Furthermore, RFCs are categorized and refer to each other using varying
semantics. This metadata can be captured, queried and used in a number of ways to present the RFC collection in a
better way.

3.1 Writing your own download implementation

The purpose of the download() method is to fetch source documents from a remote source and store them locally,
possibly under different filenames but otherwise bit-for-bit identical with how they were stored at the remote source
(see File storage for more information about how and where files are stored locally).

The default implementation of download() uses a small number of methods and class variables to do the actual
work. By selectively overriding these, you can often avoid rewriting a complete implementation of download().

3.1.1 A simple example

We’ll start out by creating a class similar to our W3C class in First steps. All RFC documents are listed in the index
file at http://www.ietf.org/download/rfc-index.txt, while a individual document (such as RFC 6725) are available at
http://tools.ietf.org/rfc/rfc6725.txt. Our first attempt will look like this (save as rfcs.py)

import re
from datetime import datetime, date

import requests

from ferenda import DocumentRepository, TextReader
from ferenda import util
from ferenda.decorators import downloadmax

(continues on next page)

17

http://www.ietf.org/rfc.html
http://www.ietf.org/
http://www.ietf.org/download/rfc-index.txt
http://tools.ietf.org/rfc/rfc6725.txt

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

class RFCs(DocumentRepository):
alias = "rfc"
start_url = "http://www.ietf.org/download/rfc-index.txt"
document_url_template = "http://tools.ietf.org/rfc/rfc%(basefile)s.txt"
downloaded_suffix = ".txt"

And we’ll enable it and try to run it like before:

$./ferenda-build.py rfcs.RFCs enable
$./ferenda-build.py rfc download

This doesn’t work! This is because start page contains no actual HTML links – it’s a plaintext file. We need to parse
the index text file to find out all available basefiles. In order to do that, we must override download().

def download(self):
self.log.debug("download: Start at %s" % self.start_url)
indextext = requests.get(self.start_url).text
reader = TextReader(string=indextext) # see TextReader class
iterator = reader.getiterator(reader.readparagraph)
if not isinstance(self.config.downloadmax, (int, type(None))):

self.config.downloadmax = int(self.config.downloadmax)

for basefile in self.download_get_basefiles(iterator):
self.download_single(basefile)

@downloadmax
def download_get_basefiles(self, source):

for p in reversed(list(source)):
if re.match("^(\d{4}) ",p): # looks like a RFC number

if not "Not Issued." in p: # Skip RFC known to not exist
basefile = str(int(p[:4])) # eg. '0822' -> '822'
yield basefile

Since the RFC index is a plain text file, we use the TextReader class, which contains a bunch of functionality to
make it easier to work with plain text files. In this case, we’ll iterate through the file one paragraph at a time, and if
the paragraph starts with a four-digit number (and the number hasn’t been marked “Not Issued.”) we’ll download it by
calling download_single().

Like the default implementation, we offload the main work to download_single(), which will look if the file
exists on disk and only if not, attempt to download it. If the --refresh parameter is provided, a conditional get is
performed and only if the server says the document has changed, it is re-downloaded.

Note: In many cases, the URL for the downloaded document is not easily constructed from a basefile identifier.
download_single() therefore takes a optional url argument. The above could be written more verbosely like:

url = "http://tools.ietf.org/rfc/rfc%s.txt" % basefile
self.download_single(basefile, url)

In other cases, a document to be downloaded could consists of several resources (eg. a HTML document with images,
or a PDF document with the actual content combined with a HTML document with document metadata). For these
cases, you need to override download_single().

18 Chapter 3. Creating your own document repositories

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

Ferenda Documentation, Release 0.3.1.dev1

3.1.2 The main flow of the download process

The main flow is that the download() method itself does some source-specific setup, which often include down-
loading some sort of index or search results page. The location of that index resource is given by the class variable
start_url. download() then calls download_get_basefiles() which returns an iterator of basefiles.

For each basefile, download_single() is called. This method is responsible for downloading everything related
to a single document. Most of the time, this is just a single file, but can occasionally be a set of files (like a HTML
document with accompanying images, or a set of PDF files that conceptually is a single document).

The default implementation of download_single() assumes that a document is just a single file, and calculates
the URL of that document by calling the remote_url() method.

The default remote_url() method uses the class variable document_url_template. This string tem-
plate should be using string formatting and expect a variable called basefile. The default implementation of
remote_url() can in other words only be used if the URLs of the remote source are predictable and directly based
on the basefile.

Note: In many cases, the URL for the remote version of a document can be impossible to calculate from
the basefile only, but be readily available from the main index page or search result page. For those cases,
download_get_basefiles() should return a iterator that yields (basefile, url) tuples. The default
implementation of download() handles this and uses url as the second, optional argument to download_single.

Finally, the actual downloading of individual files is done by the download_if_needed() method. As the name
implies, this method tries to avoid downloading anything from the network if it’s not strictly needed. If there is a file
in-place already, a conditional GET is done (using the timestamp of the file for a If-modified-since header,
and an associated .etag file for a If-none-match header). This avoids re-downloading the (potentially large) file if
it hasn’t changed.

To summarize: The main chain of calls looks something like this:

download
start_url (class variable)
download_get_basefiles (instancemethod) - iterator
download_single (instancemethod)

remote_url (instancemethod)
document_url_template (class variable)

download_if_needed (instancemethod)

These are the methods that you may override, and when you might want to do so:

3.1. Writing your own download implementation 19

Ferenda Documentation, Release 0.3.1.dev1

methodDefault behaviour Override when
down-
load

Download the contents of
start_url and extracts
all links by lxml.html.
iterlinks, which are passed
to download_get_basefiles.
For each item that is returned, call
download_single.

All your documents are not linked from a single index page
(i.e. paged search results). In these cases, you should override
download_get_basefiles as well and make that method
responsible for fetching all pages of search results.

down-
load_get_basefiles

Iterate through the (element, at-
tribute, link, url) tuples from the
source and examine if link matches
basefile_regex or if url match
document_url_regex. If so,
yield a (text, url) tuple.

The basefile/url extraction is more complicated than
what can be achieved through the basefile_regex /
document_url_regex mechanism, or when you’ve overrid-
den download to pass a different argument than a link iterator.
Note that you must return an iterator by using the yield
statement for each basefile found.

down-
load_single

Calculates the url of the docu-
ment to download (or, if a URL
is provided, uses that), and calls
download_if_needed with
that. Afterwards, updates the
DocumentEntry of the document
to reflect source url and download
timestamps.

The complete contents of your document is contained in sev-
eral different files. In these cases, you should start with the
main one and call download_if_needed for that, then cal-
culate urls and file paths (using the attachment parameter to
store.downloaded_path) for each additional file, then call
download_if_needed for each. Finally, you must update the
DocumentEntry object.

re-
mote_url

Calculates a URL from a basename us-
ing document_url_template

The rules for producing a URL from a basefile is more compli-
cated than what string formatting can achieve.

down-
load_if_needed

Downloads an individual URL to a lo-
cal file. Makes sure the local file
has the same timestamp as the Last-
modified header from the server. If an
older version of the file is present, this
can either be archived (the default) or
overwritten.

You really shouldn’t.

3.1.3 The optional basefile argument

During early stages of development, it’s often useful to just download a single document, both in order to check out
that download_single works as it should, and to have sample documents for parse. When using the ferenda-build.py
tool, the download command can take a single optional parameter, ie.:

./ferenda-build.py rfc download 6725

If provided, this parameter is passed to the download method as the optional basefile parameter. The default implemen-
tation of download checks if this parameter is provided, and if so, simply calls download_single with that parameter,
skipping the full download procedure. If you’re overriding download, you should support this usage, by starting your
implementation with something like this:

def download(self, basefile=None):
if basefile:

return self.download_single(basefile)

the rest of your code

20 Chapter 3. Creating your own document repositories

Ferenda Documentation, Release 0.3.1.dev1

3.1.4 The downloadmax() decorator

As we saw in Introduction to Ferenda, the built-in docrepos support a downloadmax configuration parameter. The
effect of this parameter is simply to interrupt the downloading process after a certain amount of documents have
been downloaded. This can be useful when doing integration-type testing, or if you just want to make it easy for
someone else to try out your docrepo class. The separation between the main download() method anbd the
download_get_basefiles() helper method makes this easy – just add the @downloadmax() to the lat-
ter. This decorator reads the downloadmax configuration parameter (it also looks for a FERENDA_DOWNLOADMAX
environment variable) and if set, limits the number of basefiles returned by download_get_basefiles().

3.2 Writing your own parse implementation

The purpose of the parse() method is to take the downloaded file(s) for a particular document and parse it into a
structured document with proper metadata, both for the document as a whole, but also for individual sections of the
document.

In order to properly handle our RDF data, we need to tell
ferenda which namespaces we'll be using. These will be available
as rdflib.Namespace objects in the self.ns dict, which means you
can state that something is eg. a dcterms:title by using
self.ns['dcterms'].title. See
:py:data:`~ferenda.DocumentRepository.namespaces`
namespaces = ('rdf', # always needed

'dcterms', # title, identifier, etc
'bibo', # Standard and DocumentPart classes, chapter prop
'xsd', # datatypes
'foaf', # rfcs are foaf:Documents for now
('rfc','http://example.org/ontology/rfc/')
)

from rdflib import Namespace
rdf_type = Namespace('http://example.org/ontology/rfc/').RFC

from ferenda.decorators import managedparsing

@managedparsing
def parse(self, doc):

some very simple heuristic rules for determining
what an individual paragraph is

def is_heading(p):
If it's on a single line and it isn't indented with spaces
it's probably a heading.
if p.count("\n") == 0 and not p.startswith(" "):

return True

def is_pagebreak(p):
if it contains a form feed character, it represents a page break
return "\f" in p

Parsing a document consists mainly of two parts:
1: First we parse the body of text and store it in doc.body
from ferenda.elements import Body, Preformatted, Title, Heading
from ferenda import Describer

(continues on next page)

3.2. Writing your own parse implementation 21

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

reader = TextReader(self.store.downloaded_path(doc.basefile))

First paragraph of an RFC is always a header block
header = reader.readparagraph()
Preformatted is a ferenda.elements class representing a
block of preformatted text. It is derived from the built-in
list type, and must thus be initialized with an iterable, in
this case a single-element list of strings. (Note: if you
try to initialize it with a string, because strings are
iterables as well, you'll end up with a list where each
character in the string is an element, which is not what you
want).
preheader = Preformatted([header])
Doc.body is a ferenda.elements.Body class, which is also
is derived from list, so it has (amongst others) the append
method. We build our document by adding to this root
element.
doc.body.append(preheader)

Second paragraph is always the title, and we don't include
this in the body of the document, since we'll add it to the
medata -- once is enough
title = reader.readparagraph()

After that, just iterate over the document and guess what
everything is. TextReader.getiterator is useful for
iterating through a text in other chunks than single lines
for para in reader.getiterator(reader.readparagraph):

if is_heading(para):
Heading is yet another of these ferenda.elements
classes.
doc.body.append(Heading([para]))

elif is_pagebreak(para):
Just drop these remnants of a page-and-paper-based past
pass

else:
If we don't know that it's something else, it's a
preformatted section (the safest bet for RFC text).
doc.body.append(Preformatted([para]))

2: Then we create metadata for the document and store it in
doc.meta (in this case using the convenience
ferenda.Describer class).

desc = Describer(doc.meta, doc.uri)

Set the rdf:type of the document
desc.rdftype(self.rdf_type)

Set the title we've captured as the dcterms:title of the document and
specify that it is in English
desc.value(self.ns['dcterms'].title, util.normalize_space(title), lang="en")

Construct the dcterms:identifier (eg "RFC 6991") for this document from the
→˓basefile

desc.value(self.ns['dcterms'].identifier, "RFC " + doc.basefile)

(continues on next page)

22 Chapter 3. Creating your own document repositories

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

find and convert the publication date in the header to a datetime
object, and set it as the dcterms:issued date for the document
re_date = re.compile(

→˓"(January|February|March|April|May|June|July|August|September|October|November|December)
→˓(\d{4})").search

This is a context manager that temporarily sets the system
locale to the "C" locale in order to be able to use strptime
with a string on the form "August 2013", even though the
system may use another locale.
dt_match = re_date(header)
if dt_match:

with util.c_locale():
dt = datetime.strptime(re_date(header).group(0), "%B %Y")

pubdate = date(dt.year,dt.month,dt.day)
Note that using some python types (cf. datetime.date)
results in a datatyped RDF literal, ie in this case
<http://localhost:8000/res/rfc/6994> dcterms:issued "2013-08-01"^^

→˓xsd:date
desc.value(self.ns['dcterms'].issued, pubdate)

find any older RFCs that this document updates or obsoletes
obsoletes = re.search("^Obsoletes: ([\d+,]+)", header, re.MULTILINE)
updates = re.search("^Updates: ([\d+,]+)", header, re.MULTILINE)

Find the category of this RFC, store it as dcterms:subject
cat_match = re.search("^Category: ([\w]+?)(|$)", header, re.MULTILINE)
if cat_match:

desc.value(self.ns['dcterms'].subject, cat_match.group(1))

for predicate, matches in ((self.ns['rfc'].updates, updates),
(self.ns['rfc'].obsoletes, obsoletes)):

if matches is None:
continue

add references between this document and these older rfcs,
using either rfc:updates or rfc:obsoletes
for match in matches.group(1).strip().split(", "):

uri = self.canonical_uri(match)
Note that this uses our own unofficial
namespace/vocabulary
http://example.org/ontology/rfc/
desc.rel(predicate, uri)

And now we're done. We don't need to return anything as
we've modified the Document object that was passed to
us. The calling code will serialize this modified object to
XHTML and RDF and store it on disk

This implementation builds a very simple object model of a RFC document, which is serialized to a XHTML1.1+RDFa
document by the managedparsing() decorator. If you run it (by calling ferenda-build.py rfc parse
--all) after having downloaded the rfc documents, the result will be a set of documents in data/rfc/parsed,
and a set of RDF files in data/rfc/distilled. Take a look at them! The above might appear to be a lot of
code, but it also accomplishes much. Furthermore, it should be obvious how to extend it, for instance to create more
metadata from the fields in the header (such as capturing the RFC category, the publishing party, the authors etc)
and better semantic representation of the body (such as marking up regular paragraphs, line drawings, bulleted lists,
definition lists, EBNF definitions and so on).

3.2. Writing your own parse implementation 23

Ferenda Documentation, Release 0.3.1.dev1

Next up, we’ll extend this implementation in two ways: First by representing the nested nature of the sections and
subsections in the documents, secondly by finding and linking citations/references to other parts of the text or other
RFCs in full.

Note: How does ./ferenda-build.py rfc parse --all work? It calls list_basefiles_for()
with the argument parse, which lists all downloaded files, and extracts the basefile for each of them, then calls parse
for each in turn.

3.2.1 Handling document structure

The main text of a RFC is structured into sections, which may contain subsections, which in turn can contain subsub-
sections. The start of each section is easy to identify, which means we can build a model of this structure by extending
our parse method with relatively few lines:

from ferenda.elements import Section, Subsection, Subsubsection

More heuristic rules: Section headers start at the beginning
of a line and are numbered. Subsections and subsubsections
have dotted numbers, optionally with a trailing period, ie
'9.2.' or '11.3.1'
def is_section(p):

return re.match(r"\d+\.? +[A-Z]", p)

def is_subsection(p):
return re.match(r"\d+\.\d+\.? +[A-Z]", p)

def is_subsubsection(p):
return re.match(r"\d+\.\d+\.\d+\.? +[A-Z]", p)

def split_sectionheader(p):
returns a tuple of title, ordinal, identifier
ordinal, title = p.split(" ",1)
ordinal = ordinal.strip(".")
return title.strip(), ordinal, "RFC %s, section %s" % (doc.basefile,

→˓ordinal)

Use a list as a simple stack to keep track of the nesting
depth of a document. Every time we create a Section,
Subsection or Subsubsection object, we push it onto the
stack (and clear the stack down to the appropriate nesting
depth). Every time we create some other object, we append it
to whatever object is at the top of the stack. As your rules
for representing the nesting of structure become more
complicated, you might want to use the
:class:`~ferenda.FSMParser` class, which lets you define
heuristic rules (recognizers), states and transitions, and
takes care of putting your structure together.
stack = [doc.body]

for para in reader.getiterator(reader.readparagraph):
if is_section(para):

title, ordinal, identifier = split_sectionheader(para)
s = Section(title=title, ordinal=ordinal, identifier=identifier)
stack[1:] = [] # clear all but bottom element

(continues on next page)

24 Chapter 3. Creating your own document repositories

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

stack[0].append(s) # add new section to body
stack.append(s) # push new section on top of stack

elif is_subsection(para):
title, ordinal, identifier = split_sectionheader(para)
s = Subsection(title=title, ordinal=ordinal, identifier=identifier)
stack[2:] = [] # clear all but bottom two elements
stack[1].append(s) # add new subsection to current section
stack.append(s)

elif is_subsubsection(para):
title, ordinal, identifier = split_sectionheader(para)
s = Subsubsection(title=title, ordinal=ordinal, identifier=identifier)
stack[3:] = [] # clear all but bottom three
stack[-1].append(s) # add new subsubsection to current subsection
stack.append(s)

elif is_heading(para):
stack[-1].append(Heading([para]))

elif is_pagebreak(para):
pass

else:
pre = Preformatted([para])
stack[-1].append(pre)

This enhances parse so that instead of outputting a single long list of elements directly under body:

<h1>2. Overview</h1>
<h1>2.1. Date, Location, and Participants</h1>
<pre>

The second ForCES interoperability test meeting was held by the IETF
ForCES Working Group on February 24-25, 2011...

</pre>
<h1>2.2. Testbed Configuration</h1>
<h1>2.2.1. Participants' Access</h1>
<pre>

NTT and ZJSU were physically present for the testing at the Internet
Technology Lab (ITL) at Zhejiang Gongshang University in China.

</pre>

. . . we have a properly nested element structure, as well as much more metadata represented in RDFa form:

<div class="section" property="dcterms:title" content=" Overview"
typeof="bibo:DocumentPart" about="http://localhost:8000/res/rfc/6984#S2.">

<span property="bibo:chapter" content="2."
about="http://localhost:8000/res/rfc/6984#S2."/>

<div class="subsection" property="dcterms:title" content=" Date, Location, and
→˓Participants"

typeof="bibo:DocumentPart" about="http://localhost:8000/res/rfc/6984#S2.1.">
<span property="bibo:chapter" content="2.1."

about="http://localhost:8000/res/rfc/6984#S2.1."/>
<pre>

The second ForCES interoperability test meeting was held by the
IETF ForCES Working Group on February 24-25, 2011...

</pre>
<div class="subsection" property="dcterms:title" content=" Testbed Configuration"

typeof="bibo:DocumentPart" about="http://localhost:8000/res/rfc/6984#S2.2.">
<span property="bibo:chapter" content="2.2."

about="http://localhost:8000/res/rfc/6984#S2.2."/>
<div class="subsubsection" property="dcterms:title" content=" Participants'

→˓Access" (continues on next page)

3.2. Writing your own parse implementation 25

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

typeof="bibo:DocumentPart" about="http://localhost:8000/res/rfc/6984#S2.2.
→˓1.">

<span content="2.2.1." about="http://localhost:8000/res/rfc/6984#S2.2.1."
property="bibo:chapter"/>

<pre>
NTT and ZJSU were physically present for the testing at the
Internet Technology Lab (ITL) at Zhejiang Gongshang
University in China...

</pre>
</div>

</div>
</div>

</div>

Note in particular that every section and subsection now has a defined URI (in the @about attribute). This will be
useful later.

3.2.2 Handling citations in text

References / citations in RFC text is often of the form "are to be interpreted as described in
[RFC2119]" (for citations to other RFCs in whole), "as described in Section 7.1" (for citations to
other parts of the current document) or "Section 2.4 of [RFC2045] says" (for citations to a specific part
in another document). We can define a simple grammar for these citations using pyparsing:

from pyparsing import Word, CaselessLiteral, nums
section_citation = (CaselessLiteral("section") + Word(nums+".").

→˓setResultsName("Sec")).setResultsName("SecRef")
rfc_citation = ("[RFC" + Word(nums).setResultsName("RFC") + "]").

→˓setResultsName("RFCRef")
section_rfc_citation = (section_citation + "of" + rfc_citation).

→˓setResultsName("SecRFCRef")

The above productions have named results for different parts of the citation, ie a citation of the form “Section 2.4 of
[RFC2045] says” will result in the named matches Sec = “2.4” and RFC = “2045”. The CitationParser class can be
used to extract these matches into a dict, which is then passed to a uri formatter function like:

def rfc_uriformatter(parts):
uri = ""
if 'RFC' in parts:

uri += self.canonical_uri(parts['RFC'].lstrip("0"))
if 'Sec' in parts:

uri += "#S" + parts['Sec']
return uri

And to initialize a citation parser and have it run over the entire structured text, finding citations and formatting them
into URIs as we go along, just use:

from ferenda import CitationParser, URIFormatter
citparser = CitationParser(section_rfc_citation,

section_citation,
rfc_citation)

citparser.set_formatter(URIFormatter(("SecRFCRef", rfc_uriformatter),
("SecRef", rfc_uriformatter),
("RFCRef", rfc_uriformatter)))

citparser.parse_recursive(doc.body)

26 Chapter 3. Creating your own document repositories

http://pyparsing.wikispaces.com/

Ferenda Documentation, Release 0.3.1.dev1

The result of these lines is that the following block of plain text:

<pre>
The behavior recommended in Section 2.5 is in line with generic error
treatment during the IKE_SA_INIT exchange, per Section 2.21.1 of
[RFC5996].

</pre>

. . . transform into this hyperlinked text:

<pre>
The behavior recommended in <a href="#S2.5"
rel="dcterms:references">Section 2.5 is in line with generic
error treatment during the IKE_SA_INIT exchange, per <a
href="http://localhost:8000/res/rfc/5996#S2.21.1"
rel="dcterms:references">Section 2.21.1 of [RFC5996].

</pre>

Note: The uri formatting function uses canonical_uri() to create the base URI for each external reference.
Proper design of the URIs you’ll be using is a big topic, and you should think through what URIs you want to use for
your documents and their parts. Ferenda provides a default implementation to create URIs from document properties,
but you might want to override this.

The parse step is probably the part of your application which you’ll spend the most time developing. You can start
simple (like above) and then incrementally improve the end result by processing more metadata, model the semantic
document structure better, and handle in-line references in text more correctly. See also Building structured documents,
Parsing document structure and Citation parsing.

3.3 Calling relate()

The purpose of the relate() method is to make sure that all document data and metadata is properly stored and
indexed, so that it can be easily retrieved in later steps. This consists of three steps: Loading all RDF metadata into a
triplestore, loading all document content into a full text index, and making note of how documents refer to each other.

Since the output of parse is well structured XHTML+RDFa documents that, on the surface level, do not differ much
from docrepo to docrepo, you should not have to change anything about this step.

Note: You might want to configure whether to load everything into a fulltext index – this operation takes a lot of time,
and this index is not even used if createing a static site. You do this by setting fulltextindex to False, either in
ferenda.ini or on the command line:

./ferenda-build.py rfc relate --all --fulltextindex=False

3.4 Calling makeresources()

This method needs to run at some point before generate and the rest of the methods. Unlike the other methods
described above and below, which are run for one docrepo at a time, this method is run for the project as a whole (that
is why it is a function in ferenda.manager instead of a DocumentRepository method). It constructs a set of
site-wide resources such as minified js and css files, and configuration for the site-wide XSLT template. It is easy to
run using the command-line tool:

3.3. Calling relate() 27

Ferenda Documentation, Release 0.3.1.dev1

$./ferenda-build.py all makeresources

If you use the API, you need to provide a list of instances of the docrepos that you’re using, and the path to where
generated resources should be stored:

from ferenda.manager import makeresources
config = {'datadir':'mydata'}
myrepos = [RFC(**config), W3C(**config]
makeresources(myrepos,'mydata/myresources')

3.5 Customizing generate()

The purpose of the generate() method is to create new browser-ready HTML files from the structured
XHTML+RDFa files created by parse(). Unlike the files created by parse(), these files will contain site-branded
headers, footers, navigation menus and such. They will also contain related content not directly found in the parsed
files themselves: Sectioned documents will have a automatically-generated table of contents, and other documents that
refer to a particular document will be listed in a sidebar in that document. If the references are made to individual
sections, there will be sidebars for all such referenced sections.

The default implementation does this in two steps. In the first, prep_annotation_file() fetches metadata about
other documents that relates to the document to be generated into an annotation file. In the second, Transformer
runs an XSLT transformation on the source file (which sources the annotation file and a configuration file created by
makeresources()) in order to create the browser-ready HTML file.

You should not need to override the general generate() method, but you might want to control how the annotation
file and the XSLT transformation is done.

3.5.1 Getting annotations

The prep_annotation_file() step is driven by a SPARQL construct query. The default query fetches meta-
data about every other document that refers to the document (or sections thereof) you’re generating, using the
dcterms:references predicate. By setting the class variable sparql_annotations to the file name of
SPARQL query file of your choice, you can override this query.

Since our metadata contains more specialized statements on how document refer to each other, in the form of
rfc:updates and rfc:obsoletes statements, we want a query that’ll fetch this metadata as well. When we
query for metadata about a particular document, we want to know if there is any other document that updates or ob-
soletes this document. Using a CONSTRUCT query, we create rfc:isUpdatedBy and rfc:isObsoletedBy
references to such documents. These queries are stored alongside the rest of the project in separate .rq files.

sparql_annotations = "rfc-annotations.rq"

The contents of the resource rfc-annotations.rq, which should be placed in a subdirectory named res in the
current directory, should be:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX bibo: <http://purl.org/ontology/bibo/>
PREFIX rfc: <http://example.org/ontology/rfc/>

CONSTRUCT {?s ?p ?o .
<%(uri)s> rfc:isObsoletedBy ?obsoleter .
<%(uri)s> rfc:isUpdatedBy ?updater .

(continues on next page)

28 Chapter 3. Creating your own document repositories

http://www.w3.org/TR/rdf-sparql-query/#construct

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

<%(uri)s> dcterms:isReferencedBy ?referencer .
}

WHERE
{

get all literal metadata where the document is the subject
{ ?s ?p ?o .

FILTER(strstarts(str(?s), "%(uri)s"))
FILTER(?s = <%(uri)s> && !isUri(?o))

}
UNION
get all metadata (except unrelated dcterms:references) about
resources that dcterms:references the document or any of its
sub-resources.
{ ?s dcterms:references+ <%(uri)s> ;

?p ?o .
BIND(?s as ?referencer)
FILTER(?p != dcterms:references || strstarts(str(?o), "%(uri)s"))

}
UNION
get all metadata (except dcterms:references) about any resource that
rfc:updates or rfc:obsolets the document
{ ?s ?x <%(uri)s> ;

?p ?o .
FILTER(?x in (rfc:updates, rfc:obsoletes) && ?p != dcterms:references)

}
finally, bind obsoleting and updating resources to new variables for
use in the CONSTRUCT clause
UNION { ?obsoleter rfc:obsoletes <%(uri)s> . }
UNION { ?updater rfc:updates <%(uri)s> . }

}

Note that %(uri)s will be replaced with the URI for the document we’re querying about.

Now, when querying the triplestore for metadata about RFC 6021, the (abbreviated) result is:

<graph xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rfc="http://example.org/ontology/rfc/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<resource uri="http://localhost:8000/res/rfc/6021">
<rfc:isObsoletedBy ref="http://localhost:8000/res/rfc/6991"/>
<dcterms:published fmt="datatype">

<date xmlns="http://www.w3.org/2001/XMLSchema#">2010-10-01</date>
</dcterms:published>
<dcterms:title xml:lang="en">Common YANG Data Types</dcterms:title>

</resource>
<resource uri="http://localhost:8000/res/rfc/6991">
<a><rfc:RFC/>
<rfc:obsoletes ref="http://localhost:8000/res/rfc/6021"/>
<dcterms:published fmt="datatype">
<date xmlns="http://www.w3.org/2001/XMLSchema#">2013-07-01</date>

</dcterms:published>
<dcterms:title xml:lang="en">Common YANG Data Types</dcterms:title>

</resource>
</graph>

Note: You can find this file in data/rfc/annotations/6021.grit.xml. It’s in the Grit format for easy

3.5. Customizing generate() 29

http://code.google.com/p/oort/wiki/Grit

Ferenda Documentation, Release 0.3.1.dev1

inclusion in XSLT processing.

Even if you’re not familiar with the format, or with RDF in general, you can see that it contains information about two
resources: first the document we’ve queried about (RFC 6021), then the document that obsoletes the same document
(RFC 6991).

Note: If you’re coming from a relational database/SQL background, it can be a little difficult to come to grips with
graph databases and SPARQL. The book “Learning SPARQL” by Bob DuCharme is highly recommended.

3.5.2 Transforming to HTML

The Transformer step is driven by a XSLT stylesheet. The default stylesheet uses a site-wide configuration file
(created by makeresources()) for things like site name and top-level navigation, and lists the document content,
section by section, alongside of other documents that contains references (in the form of dcterms:references)
for each section. The SPARQL query and the XSLT stylesheet often goes hand in hand – if your stylesheet needs a
certain piece of data, the query must be adjusted to fetch it. By setting he class variable xslt_template in the
same way as you did for the SPARQL query, you can override the default.

xslt_template = "rfc.xsl"

The contents of the resource rfc.xsl, which should be placed in a subdirectory named res in the current directory,
should be:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"

xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rfc="http://example.org/ontology/rfc/"
xml:space="preserve"
exclude-result-prefixes="xhtml rdf">

<xsl:include href="base.xsl"/>

<!-- Implementations of templates called by base.xsl -->
<xsl:template name="headtitle"><xsl:value-of select="//xhtml:title"/> | <xsl:value-

→˓of select="$configuration/sitename"/></xsl:template>
<xsl:template name="metarobots"/>
<xsl:template name="linkalternate"/>
<xsl:template name="headmetadata"/>
<xsl:template name="bodyclass">rfc</xsl:template>
<xsl:template name="pagetitle">
<h1><xsl:value-of select="../xhtml:head/xhtml:title"/></h1>

</xsl:template>

<xsl:template match="xhtml:a"><xsl:value-of select="."/></
→˓xsl:template>

<xsl:template match="xhtml:pre[1]">
<pre><xsl:apply-templates/>
</pre>
<xsl:if test="count(ancestor::*) = 2">

(continues on next page)

30 Chapter 3. Creating your own document repositories

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

<xsl:call-template name="aside-annotations">
<xsl:with-param name="uri" select="../@about"/>

</xsl:call-template>
</xsl:if>

</xsl:template>

<!-- everything that has an @about attribute, i.e. _is_ something
(with a URI) gets a <section> with an <aside> for inbound links etc -->

<xsl:template match="xhtml:div[@about]">

<div class="section-wrapper" about="{@about}"><!-- needed? -->
<section id="{substring-after(@about,'#')}">
<xsl:variable name="sectionheading"><xsl:if test="xhtml:span[@property=

→˓'bibo:chapter']/@content"><xsl:value-of select="xhtml:span[@property='bibo:chapter
→˓']/@content"/>. </xsl:if><xsl:value-of select="@content"/></xsl:variable>

<xsl:if test="count(ancestor::*) = 2">
<h2><xsl:value-of select="$sectionheading"/></h2>

</xsl:if>
<xsl:if test="count(ancestor::*) = 3">
<h3><xsl:value-of select="$sectionheading"/></h3>

</xsl:if>
<xsl:if test="count(ancestor::*) = 4">
<h4><xsl:value-of select="$sectionheading"/></h4>

</xsl:if>
<xsl:apply-templates select="*[not(@about)]"/>

</section>
<xsl:call-template name="aside-annotations">
<xsl:with-param name="uri" select="@about"/>

</xsl:call-template>
</div>
<xsl:apply-templates select="xhtml:div[@about]"/>

</xsl:template>

<!-- remove spans which only purpose is to contain RDFa data -->
<xsl:template match="xhtml:span[@property and @content and not(text())]"/>

<!-- construct the side navigation -->
<xsl:template match="xhtml:div[@about]" mode="toc">
<xsl:if test="xhtml:span/@content">

→˓<xsl:value-of select="xhtml:span[@property='bibo:chapter']/@content"/>. </xsl:if>
→˓<xsl:value-of select="@content"/><xsl:if test="xhtml:div[@about]">

<xsl:apply-templates mode="toc"/>
</xsl:if>

</xsl:template>

<!-- named template called from other templates which match
xhtml:div[@about] and pre[1] above, and which creates -->

<xsl:template name="aside-annotations">
<xsl:param name="uri"/>
<xsl:if test="$annotations/resource[@uri=$uri]/dcterms:isReferencedBy">

<aside class="annotations">
<h2>References to <xsl:value-of select="$annotations/resource[@uri=$uri]/

→˓dcterms:identifier"/></h2>
<xsl:for-each select="$annotations/resource[@uri=$uri]/rfc:isObsoletedBy">
<xsl:variable name="referencing" select="@ref"/>
Obsoleted by

(continues on next page)

3.5. Customizing generate() 31

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

<xsl:value-of select="$annotations/resource[@uri=$referencing]/
→˓dcterms:identifier"/>

</xsl:for-each>
<xsl:for-each select="$annotations/resource[@uri=$uri]/rfc:isUpdatedBy">
<xsl:variable name="referencing" select="@ref"/>
Updated by

<xsl:value-of select="$annotations/resource[@uri=$referencing]/

→˓dcterms:identifier"/>

</xsl:for-each>
<xsl:for-each select="$annotations/resource[@uri=$uri]/dcterms:isReferencedBy

→˓">
<xsl:variable name="referencing" select="@ref"/>
Referenced by

<xsl:value-of select="$annotations/resource[@uri=$referencing]/

→˓dcterms:identifier"/>

</xsl:for-each>
</aside>

</xsl:if>
</xsl:template>

<!-- default template: translate everything from whatever namespace
it's in (usually the XHTML1.1 NS) into the default namespace
-->

<xsl:template match="*"><xsl:element name="{local-name(.)}"><xsl:apply-templates
→˓select="node()"/></xsl:element></xsl:template>

<!-- default template for toc handling: do nothing -->
<xsl:template match="@*|node()" mode="toc"/>

</xsl:stylesheet>

This XSLT stylesheet depends on base.xsl (which resides in ferenda/res/xsl in the source distribution of
ferenda – take a look if you want to know how everything fits together). The main responsibility of this stylesheet is
to format individual elements of the document body.

base.xsl takes care of the main chrome of the page, and it has a default implementation (that basically transforms
everything from XHTML1.1 to HTML5, and removes some RDFa-only elements). It also loads and provides the
annotation file in the global variable $annotations. The above XSLT stylesheet uses this to fetch information about
referencing documents. In particular, when processing an older document, it lists if later documents have updated or
obsoleted it (see the named template aside-annotations).

You might notice that this XSLT template flattens the nested structure of sections which we spent so much effort
to create in the parse step. This is to make it easier to put up the aside boxes next to each part of the document,
independent of the nesting level.

Note: While both the SPARQL query and the XSLT stylesheet might look complicated (and unless you’re a RDF/XSL
expert, they are. . .), most of the time you can get a good result using the default generic query and stylesheet.

32 Chapter 3. Creating your own document repositories

Ferenda Documentation, Release 0.3.1.dev1

3.6 Customizing toc()

The purpose of the toc() method is to create a set of pages that acts as tables of contents for all documents in your
docrepo. For large document collections there are often several different ways of creating such tables, eg. sorted by
title, publication date, document status, author and similar. The pages uses the same site-branding,headers, footers,
navigation menus etc used by generate().

The default implementation is generic enough to handle most cases, but you’ll have to override other methods which
it calls, primarily facets() and toc_item(). These methods depend on the metadata you’ve created by your
parse implementation, but in the simplest cases it’s enough to specify that you want one set of pages organized
by the dcterms:title of each document (alphabetically sorted) and another by dcterms:issued (numeri-
cally/calendarically sorted). The default implementation does exactly this.

In our case, we wish to create four kinds of sorting: By identifier (RFC number), by date of issue, by title and
by category. These map directly to four kinds of metadata that we’ve stored about each and every document. By
overriding facets() we can specify these four facets, aspects of documents used for grouping and sorting.

def facets(self):
from ferenda import Facet
return [Facet(self.ns['dcterms'].title),

Facet(self.ns['dcterms'].issued),
Facet(self.ns['dcterms'].subject),
Facet(self.ns['dcterms'].identifier)]

After running toc with this change, you can see that three sets of index pages are created. By default, the
dcterms:identifier predicate isn’t used for the TOC pages, as it’s often derived from the document title.
Furthermore, you’ll get some error messages along the lines of “Best Current Practice does not look like a valid URI”,
which is because the dcterms:subject predicate normally should have URIs as values, and we are using plain
string literals.

We can fix both these problems by customizing our facet objects a little. We specify that we wish to use
dcterms:identifier as a TOC facet, and provide a simple method to group RFCs by their identifier in groups
of 100, ie one page for RFC 1-99, another for RFC 100-199, and so on. We also specify that we expect our
dcterms:subject values to be plain strings.

def facets(self):
def select_rfcnum(row, binding, resource_graph):

"RFC 6998" -> "6900"
return row[binding][4:-2] + "00"

from ferenda import Facet
return [Facet(self.ns['dcterms'].title),

Facet(self.ns['dcterms'].issued),
Facet(self.ns['dcterms'].subject,

selector=Facet.defaultselector,
identificator=Facet.defaultselector,
key=Facet.defaultselector),

Facet(self.ns['dcterms'].identifier,
use_for_toc=True,
selector=select_rfcnum,
pagetitle="RFC %(selected)s00-%(selected)s99")]

The above code gives some example of how Facet objects can be configured. However, a Facet object does not
control how each individual document is listed on a toc page. The default formatting just lists the title of the document,
linked to the document in question. For RFCs, who mainly is referenced using their RFC number rather than their
title, we’d like to add the RFC number in this display. This is done by overriding toc_item().

3.6. Customizing toc() 33

Ferenda Documentation, Release 0.3.1.dev1

def toc_item(self, binding, row):
from ferenda.elements import Link
return [row['dcterms_identifier'] + ": ",

Link(row['dcterms_title'],
uri=row['uri'])]

Se also Customizing the table(s) of content and Grouping documents with facets.

3.7 Customizing news()

The purpose of news(), the next to final step, is to provide a set of news feeds for your document repository.

The default implementation gives you one single news feed for all documents in your docrepo, and creates both
browser-ready HTML (using the same headers, footers, navigation menus etc used by generate()) and Atom
syndication format files.

The facets you’ve defined for your docrepo are re-used to create news feeds for eg. all documents published by a
particular entity, or all documents of a certain type. Only facet objects which has the use_for_feed property set to
a truthy value are used to construct newsfeeds.

In this example, we adjust the facet based on dcterms:subject so that it can be used for newsfeed generation.

def facets(self):
def select_rfcnum(row, binding, resource_graph):

"RFC 6998" -> "6900"
return row[binding][4:-2] + "00"

from ferenda import Facet
return [Facet(self.ns['dcterms'].title),

Facet(self.ns['dcterms'].issued),
Facet(self.ns['dcterms'].subject,

selector=Facet.defaultselector,
identificator=Facet.defaultidentificator,
key=Facet.defaultselector,
use_for_feed=True),

Facet(self.ns['dcterms'].identifier,
use_for_toc=True,
selector=select_rfcnum,
pagetitle="RFC %(selected)s00-%(selected)s99")]

When running news, this will create five different atom feeds (which are mirrored as HTML pages) under data/
rfc/news: One containing all documents, and four others that contain documents in a particular category (eg having
a particular dcterms:subject value.

Note: As you can see, the resulting HTML pages are a little rough around the edges. Also, there isn’t currently any
way of discovering the Atom feeds or HTML pages from the main site – you need to know the URLs. This will all be
fixed in due time.

Se also Customizing the news feeds.

3.8 Customizing frontpage()

Finally, frontpage() creates a front page for your entire site with content from the different docrepos. Each
docrepos frontpage_content() method will be called, and should return a XHTML fragment with information

34 Chapter 3. Creating your own document repositories

http://www.ietf.org/rfc/rfc4287.txt
http://www.ietf.org/rfc/rfc4287.txt

Ferenda Documentation, Release 0.3.1.dev1

about the repository and it’s content. Below is a simple example that uses functionality we’ve used in other contexts
to create a list of the five latest documents, as well as a total count of documents.

def frontpage_content(self, primary=False):
from rdflib import URIRef, Graph
from itertools import islice
items = ""
for entry in islice(self.news_entries(),5):

graph = Graph()
with self.store.open_distilled(entry.basefile) as fp:

graph.parse(data=fp.read())
data = {'identifier': graph.value(URIRef(entry.id), self.ns['dcterms'].

→˓identifier).toPython(),
'uri': entry.id,
'title': entry.title}

items += '%(identifier)s %(title)s' % data
return ("""<h2>Request for comments</h2>

<p>A complete archive of RFCs in Linked Data form. Contains
→˓%(doccount)s documents.</p>

<p>Latest 5 documents:</p>

%(items)s
""" % {'uri':self.dataset_uri(),

'items': items,
'doccount': len(list(self.store.list_basefiles_for("_

→˓postgenerate")))})

3.9 Next steps

When you have written code and customized downloading, parsing and all the other steps, you’ll want to run all these
steps for all your docrepos in a single command by using the special value all for docrepo, and again all for action:

./ferenda-build.py all all

By now, you should have a basic idea about the key concepts of ferenda. In the next section, Key concepts, we’ll
explore them further.

3.9. Next steps 35

Ferenda Documentation, Release 0.3.1.dev1

36 Chapter 3. Creating your own document repositories

CHAPTER 4

Key concepts

4.1 Project

A collection of docrepos and configuration that is used to make a useful web site. The first step in creating a project is
running ferenda-setup <projectname>.

A project is primarily defined by its configuration file at <projectname>/ferenda.ini, which specifies which
docrepos are used, and settings for them as well as settings for the entire project.

A project is managed using the ferenda-build.py tool.

If using the API instead of these command line tools, there is no concept of a project except for what your code
provides. Your client code is responsible for creating the docrepo classes and providing them with proper settings.
These can be loaded from a ferenda.ini-style file, be hard-coded, or handled in any other way you see fit.

Note: Ferenda uses the layeredconfig module internally to handle all settings.

4.2 Configuration

A ferenda docrepo object can be configured in two ways - either when creating the object, eg:

d = DocumentSource(datadir="mydata", loglevel="DEBUG",force=True)

Note: Parameters that is not provided when creating the object are defaulted from the built-in configuration values
(see below)

Or it can be configured using the LayeredConfig class, which takes configuration data from three places:

• built-in configuration values (provided by get_default_options())

37

Ferenda Documentation, Release 0.3.1.dev1

• values from a configuration file (normally ferenda.ini”, placed alongside ferenda-build.py)

• command-line parameters, eg --force --datadir=mydata

d = DocumentSource()
d.config = LayeredConfig(defaults=d.get_default_options(),

inifile="ferenda.ini",
commandline=sys.argv)

(This is what ferenda-build.py does behind the scenes)

Configuration values from the configuration file overrides built-in configuration values, and command line parameters
override configuration file values.

By setting the config property, you override any parameters provided when creating the object.

These are the normal configuration options:

38 Chapter 4. Key concepts

Ferenda Documentation, Release 0.3.1.dev1

option description default
datadir Directory for all downloaded/parsed etc files ‘data’
patchdir Directory containing patch files used by

patch_if_needed
‘patches’

parse-
force

Whether to re-parse downloaded files, even if resulting
XHTML1.1 files exist and are newer than downloaded
files

False

com-
press

Whether to compress intermediate files. Can be either
a empty string (don’t compress) or ‘bz2’ (compress us-
ing bz2).

‘’

serial-
izejson

Whether to serialize document data as a JSON docu-
ment in the parse step.

False

gen-
erate-
force

Whether to re-generate browser-ready HTML5 files,
even if they exist and are newer than all dependencies

False

force If True, overrides both parseforce and generateforce. False
fsmde-
bug

Whether to display debugging information from FSM-
Parser

False

refresh Whether to re-download all files even if previously
downloaded.

False

last-
down-
load

The datetime when this repo was last downloaded
(stored in conf file)

None

down-
load-
max

Maximum number of documents to download (None
means download all of them).

None

condi-
tional-
get

Whether to use Conditional GET (through the If-
modified-since and/or If-none-match headers)

True

url The basic URL for the created site, used as tem-
plate for all managed resources in a docrepo (see
canonical_uri()).

‘http://localhost:8000/’

full-
textin-
dex

Whether to index all text in a fulltext search engine.
Note: This can take a lot of time.

True

usera-
gent

The user-agent used with any external HTTP Requests.
Please change this into something containing your con-
tact info.

‘ferenda-bot’

store-
type

Any of the suppored types: ‘SQLITE’, ‘SLEEPY-
CAT’, ‘SESAME’ or ‘FUSEKI’. See Triple stores.

‘SQLITE’

store-
loca-
tion

The file path or URL to the triple store, dependent on
the storetype

‘data/ferenda.sqlite’

stor-
erepos-
itory

The repository/database to use within the given triple
store (if applicable)

‘ferenda’

index-
type

Any of the supported types: ‘WHOOSH’ or ‘ELAS-
TICSEARCH’. See Fulltext search engines.

‘WHOOSH’

in-
dexlo-
cation

The location of the fulltext index ‘data/whooshindex’

repub-
lish-
source

Whether the Atom files should contain links to the
original, unparsed, source documents

False

com-
binere-
sources

Whether to combine and minify all css and js files into
a single file each

False

cssfiles A list of all required css files [‘http://fonts.googleapis.com/css?family=
Raleway:200,100’, ‘css/normalize.css’,
‘css/main.css’, ‘css/ferenda.css’]

jsfiles A list of all required js files [‘js/jquery-1.9.0.js’, ‘js/modernizr-2.6.2-
respond-1.1.0.min.js’, ‘js/ferenda.js’]

static-
site

Whether to generate static HTML files suitable for of-
fline usage (removes search and uses relative file paths
instead of canonical URIs)

False

lega-
cyapi

Whether the REST API should provide a simpler API
for legacy clients. See The WSGI app.

False

4.2. Configuration 39

http://localhost:8000/
http://fonts.googleapis.com/css?family=Raleway:200,100
http://fonts.googleapis.com/css?family=Raleway:200,100

Ferenda Documentation, Release 0.3.1.dev1

4.3 DocumentRepository

A document repository (docrepo for short) is a class that handles all aspects of a document collection: Downloading
the documents (or aquiring them in some other way), parsing them into structured documents, and then re-generating
HTML documents with added niceties, for example references from documents from other docrepos.

You add support for a new collection of documents by subclassing DocumentRepository . For more details, see
Creating your own document repositories

4.4 Document

A Document is the main unit of information in Ferenda. A document is primarily represented in serialized form as
a XHTML 1.1 file with embedded metadata in RDFa format, and in code by the Document class. The class has five
properties:

• meta (a RDFLib Graph)

• body (a tree of building blocks, normally instances of ferenda.elements classes, representing the struc-
ture and content of the document)

• lang (an IETF language tag, eg sv or en-GB)

• uri (a string representing the canonical URI for this document)

• basefile (a short internal id)

The method render_xhtml() (which is called automatically, as long as your parse method use the
managedparsing() decorator) renders a Document object into a XHTML 1.1+RDFa document.

4.5 Identifiers

Documents, and parts of documents, in ferenda have a couple of different identifiers, and it’s useful to understand the
difference and relation between them.

• basefile: The internal id for a document. This is is internal to the document repository and is used as
the base for the filenames for the stored files . The basefile isn’t totally random and is expected to have some
relationship with a human-readable identifier for the document. As an example from the RFC docrepo, the
basefile for RFC 1147 would simply be “1147”. By the rules encoded in DocumentStore, this results in
the downloaded file rfc/downloads/1147.txt, the parsed file rfc/parsed/1147.xhtml and the
generated file rfc/generated/1147.html. Only documents themselves, not parts of documents, have
basefile identifiers.

• uri: The canonical URI for a document or a part of a document (generally speaking, a resource). This identifier
is used when storing data related to the resource in a triple store and a fulltext search engine, and is also used as
the external URL for the document when republishing (see The WSGI app and also Document URI). URI:s for
documents can be set by settings the uri property of the Document object. URIs for parts of documents are set
by setting the uri property on any elements based object in the body tree. When rendering the document
into XHTML, render_xhtml creates RDFa statements based on this property and the meta property.

• dcterms:identifier: The human readable identifier for a document or a part of a document. If the docu-
ment has an established human-readable identifier, such as “RFC 1147” or “2003/98/EC” (The EU directive on
the re-use of public sector information), the dcterms:identifier is used for this. Unlike basefile and uri, this
identifier isn’t set directly as a property on an object. Instead, you add a triple with dcterms:identifier
as the predicate to the object’s meta property, see Parsing and representing document metadata and also DCMI
Terms.

40 Chapter 4. Key concepts

https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph
http://en.wikipedia.org/wiki/IETF_language_tag
http://dublincore.org/documents/2012/06/14/dcmi-terms/#terms-identifier
http://dublincore.org/documents/2012/06/14/dcmi-terms/#terms-identifier

Ferenda Documentation, Release 0.3.1.dev1

4.6 DocumentEntry

Apart from information about what a document contains, there is also information about how it has been handled, such
as when a document was first downloaded or updated from a remote source, the URL from where it came, and when it
was made available through Ferenda. .This information is encapsulated in the DocumentEntry class. Such objects
are created and updated by various methods in DocumentRepository . The objects are persisted to JSON files,
stored alongside the documents themselves, and are used by the news() method in order to create valid Atom feeds.

4.7 File storage

During the course of processing, data about each individual document is stored in many different files in various
formats. The DocumentStore class handles most aspects of this file handling. A configured DocumentStore object
is available as the store property on any DocumentRepository object.

Example: If a created docrepo object d has the alias foo, and handles a document with the basefile identifier bar,
data about the document is then stored:

• When downloaded, the original data as retrieved from the remote server, is stored as data/foo/
downloaded/bar.html, as determined by d.store.downloaded_path()

• At the same time, a DocumentEntry object is serialized as data/foo/entries/bar.json, as determined
by d.store.documententry_path()

• If the downloaded source needs to be transformed into some intermediate format before parsing (which is the
case for eg. PDF or Word documents), the intermediate data is stored as data/foo/intermediate/bar.
xml, as determined by d.store.intermediate_path()

• When the downloaded data has been parsed, the parsed XHTML+RDFa document is stored as data/foo/
parsed/bar.xhtml, as determined by d.store.parsed_path()

• From the parsed document is automatically destilled a RDF/XML file containing all RDFa statements from the
parsed file, which is stored as data/foo/distilled/bar.rdf, as determined by d.store. data/
foo/annotations/bar.grit.txt, as determined by d.store.annotation_path().

• During the relate step, all documents which are referred to by any other document are marked as de-
pendencies of that document. If the bar document is dependent on another document, then this depen-
dency is recorded in a dependency file stored at data/foo/deps/bar.txt, as determined by d.store.
dependencies_path().

• Just prior to the generation of browser-ready HTML5 files, all metadata in the system as a whole which is
relevant to bar is serialized in an annotation file in GRIT/XML format at data/foo/annotations/bar.
grit.txt, as determined by d.store.annotation_path().

• Finally, the generated HTML5 file is created at data/foo/generated/bar.html, as determined by d.
store.generated_path(). (This step also updates the serialized DocumentEntry object described above)

4.7.1 Archiving

Whenever a new version of an existing document is downloaded, an archiving process takes place when archive()
is called (by download_if_needed()). This method requires a version id, which can be any string that uniquely
identifies a certain revision of the document. When called, all of the above files are moved into the subdirectory in the
following way (assuming that the version id is “42”):

The result of this process is that a version id for the previously existing files is calculated (by default, this is just a
simple incrementing integer, but the document in your docrepo might have a more suitable version identifier already,

4.6. DocumentEntry 41

Ferenda Documentation, Release 0.3.1.dev1

in which case you should override get_archive_version() to return this), and then all the above files (if they
have been generated) are moved into the subdirectory archive in the following way.

data/foo/downloaded/bar.html -> data/foo/archive/downloaded/bar/42.html

The method get_archive_version() is used to calculate the version id. The default implementation just pro-
vides a simple incrementing integer, but if the documents in your docrepo has a more suitable version identifier already,
you should override get_archive_version() to return this.

The archive path is calculated by providing the optional version parameter to any of the *_path methods above.

To list all archived versions for a given basefile, use the list_versions() method.

4.7.2 The open_* methods

In many cases, you don’t really need to know the filename that the *_path methods return, because you only want to
read from or write to it. For these cases, you can use the open_* methods instead. These work as context managers
just as the builtin open method do, and can be used in the same way:

Instead of:

path = self.store.downloaded_path(basefile)
with open(path, mode="wb") as fp:

fp.write(b"...")

use:

with self.store.open_downloaded(path, mode="wb") as fp:
fp.write(b"...")

4.7.3 Attachments

In many cases, a single file cannot represent the entirety of a document. For example, a downloaded HTML file may
need a series of inline images. These can be handled as attachments by the download method. Just use the optional
attachment parameter to the appropriate _path / open_ methods:

from __future__ import unicode_literals
begin part-1
class TestDocrepo(DocumentRepository):

storage_policy = "dir"

def download_single(self, basefile):
mainurl = self.document_url_template % {'basefile': basefile}
self.download_if_needed(basefile, mainurl)
with self.store.open_downloaded(basefile) as fp:

soup = BeautifulSoup(fp.read(), "lxml")
for img in soup.find_all("img"):

imgurl = urljoin(mainurl, img["src"])
begin part-2

open eg. data/foo/downloaded/bar/hello.jpg for writing
with self.store.open_downloaded(basefile,

attachment=img["src"],
mode="wb") as fp:

42 Chapter 4. Key concepts

Ferenda Documentation, Release 0.3.1.dev1

Note: The DocumentStore object must be configured to handle attachments by setting the storage_policy
property to dir. This alters the behaviour of all *_path methods, so that eg. the main downloaded path becomes
data/foo/downloaded/bar/index.html instead of data/foo/downloaded/bar.html

To list all attachments for a document, use list_attachments() method.

Note that only some of the *_path / open_* methods supports the attachment parameter (it doesn’t make sense
to have attachments for DocumentEntry files or distilled RDF/XML files).

4.8 Resources and the loadpath

Whenever ferenda needs any resource file, eg. an XSLT stylesheet, a SPARQL query template or some RDF triples in
a Turtle (.ttl) file, it uses a ResourceLoader instance to look in a series of different “system” directories.

By placing files in the correct directories, and optionally configuring the loadpath config option, you can substitute
your own resource file if the system versions aren’t to your liking.

4.8. Resources and the loadpath 43

Ferenda Documentation, Release 0.3.1.dev1

44 Chapter 4. Key concepts

CHAPTER 5

Parsing and representing document metadata

Every document has a number of properties, such as it’s title, authors, publication date, type and much more. These
properties are called metadata. Ferenda does not have a fixed set of which metadata properties are available for any
particular document type. Instead, it encourages you to describe the document using RDF and any suitable vocabulary
(or vocabularies). If you are new to RDF, a good starting point is the RDF Primer document.

Each document has a meta property which initially is an empty RDFLib Graph object. As part of the parse()
method, you should fill this graph with triples (metadata statements) about the document.

5.1 Document URI

In order to create these metadata statements, you should first create a suitable URI for your document. Preferably,
this should be a URI based on the URL where your web site will be published, ie if you plan on publishing it on
http://mynetstandards.org/, a URI for RFC 4711 might be http://mynetstandards.org/res/
rfc/4711 (ie based on the base URL, the docrepo alias, and the basefile). By changing the url variable in your
project configuration file, you can set the base URL from which all document URIs are derived. If you wish to have
more control over the exact way URIs are constructed, you can override canonical_uri().

Note: In some cases, there will be another canonical URI for the document you’re describing, used by other people in
other contexts. In these cases, you should specifiy that the metadata you’re publishing is about the exact same object
by adding a triple of the type owl:sameAs with that other canonical URI as value.

The URI for any document is available as a uri property.

5.2 Adding metadata using the RDFLib API

With this, you can create metadata for your document using the RDFLib Graph API.

45

http://www.w3.org/TR/rdf-primer/
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph

Ferenda Documentation, Release 0.3.1.dev1

Simpler way
def parse_metadata_from_soup(self, soup, doc):

from ferenda import Describer
from datetime import datetime
title = "My Document title"
authors = ["Fred Bloggs", "Joe Shmoe"]
identifier = "Docno 2013:4711"
pubdate = datetime(2013,1,6,10,8,0)
d = Describer(doc.meta, doc.uri)
d.rdftype(self.rdf_type)
d.value(self.ns['prov'].wasGeneratedBy, self.qualified_class_name())
d.value(self.ns['dcterms'].title, title, lang=doc.lang)
d.value(self.ns['dcterms'].identifier, identifier)
for author in authors:

d.value(self.ns['dcterms'].author, author)

5.3 A simpler way of adding metadata

The default RDFLib graph API is somewhat cumbersome for adding triples to a metadata graph. Ferenda has a
convenience wrapper, Describer (itself a subclass of rdflib.extras.describer.Describer) that makes
this somewhat easier. The ns class property also contains a number of references to popular vocabularies. The above
can be made more succint like this:

Simpler way
def parse_metadata_from_soup(self, soup, doc):

from ferenda import Describer
from datetime import datetime
title = "My Document title"
authors = ["Fred Bloggs", "Joe Shmoe"]
identifier = "Docno 2013:4711"
pubdate = datetime(2013,1,6,10,8,0)
d = Describer(doc.meta, doc.uri)
d.rdftype(self.rdf_type)
d.value(self.ns['prov'].wasGeneratedBy, self.qualified_class_name())
d.value(self.ns['dcterms'].title, title, lang=doc.lang)
d.value(self.ns['dcterms'].identifier, identifier)
for author in authors:

d.value(self.ns['dcterms'].author, author)

Note: parse_metadata_from_soup() doesn’t return anything. It only modifies the doc object passed to it.

5.4 Vocabularies

Each RDF vocabulary is defined by a URI, and all terms (types and properties) of that vocabulary is typically directly
derived from it. The vocabulary URI therefore acts as a namespace. Like namespaces in XML, a shorter prefix is
often assigned to the namespace so that one can use rdf:type rather than http://www.w3.org/1999/02/
22-rdf-syntax-ns#type. The DocumentRepository object keeps a dictionary of common (prefix,namespace)s
in the class property ns – your code can modify this list in order to add vocabulary terms relevant for your documents.

46 Chapter 5. Parsing and representing document metadata

https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.extras.html#rdflib.extras.describer.Describer

Ferenda Documentation, Release 0.3.1.dev1

5.5 Serialization of metadata

The render_xhtml() method serializes all information in doc.body and doc.meta to a XHTML+RDFa file
(the exact location given by parsed_path()). The metadata specified by doc.meta ends up in the <head> section
of this XHTML file.

The actual RDF statements are also distilled to a separate RDF/XML file found alongside this file (the location given
by distilled_path()) for convenience.

5.6 Metadata about parts of the document

Just like the main Document object, individual parts of the document (represented as ferenda.elements objects)
can have uri and meta properties. Unlike the main Document objects, these properties are not initialized beforehand.
But if you do create these properties, they are used to serialize metadata into RDFa properties for each

def parse_document_from_soup(self, soup, doc):
from ferenda.elements import Page
from ferenda import Describer
part = Page(["This is a part of a document"],

ordinal=42,
uri="http://example.org/doc#42",
meta=self.make_graph())

d = Describer(part.meta, part.uri)
d.rdftype(self.ns['bibo'].DocumentPart)
the dcterms:identifier for a document part is often whatever
would be the preferred way to cite that part in another
document
d.value(self.ns['dcterms'].identifier, "Doc:4711, p 42")

This results in the following document fragment:

<div xmlns="http://www.w3.org/1999/xhtml"
about="http://example.org/doc#42"
typeof="bibo:DocumentPart"
class="page">

<span property="dcterms:identifier"
content="Doc:4711, p 42"
xml:lang=""/>

This is a part of a document
</div>

5.5. Serialization of metadata 47

Ferenda Documentation, Release 0.3.1.dev1

48 Chapter 5. Parsing and representing document metadata

CHAPTER 6

Building structured documents

Any structured documents can be viewed as a tree of higher-level elements (such as chapters or sections) that contains
smaller elements (like subsections or lists) that each in turn contains even smaller elements (like paragraphs or list
items). When using ferenda, you can create documents by creating such trees of elements. The ferenda.elements
module contains classes for such elements.

Most of the classes can be used like python lists (and are, in fact, subclasses of list). Unlike the aproach used by
xml.etree.ElementTree and BeautifulSoup, where all objects are of a specific class, and a object prop-
erty determines the type of element, the element objects are of different classes if the elements are different. This
means that elements representing a paragraph are ferenda.elements.Paragraph, and elements representing
a document section are ferenda.elements.Section and so on. The core ferenda.elements module con-
tains around 15 classes that covers many basic document elements, and the submodule ferenda.elements.html
contains classes that correspond to all HTML tags. There is some functional overlap between these two module, but
ferenda.elements contains several constructs which aren’t directly expressible as HTML elements (eg. Page,
:~py:class:ferenda.elements.SectionalElement and :~py:class:ferenda.elements.Footnote)

Each element constructor (or at least those derived from CompoundElement) takes a list as an argument (same as
list), but also any number of keyword arguments. This enables you to construct a simple document like this:

from ferenda.elements import Body, Heading, Paragraph, Footnote

doc = Body([Heading(["About Doc 43/2012 and it's interpretation"],predicate=
→˓"dcterms:title"),

Paragraph(["According to Doc 43/2012",
Footnote(["Available at http://example.org/xyz"]),
" the bizbaz should be frobnicated"])

])

Note: Since CompoundElement works like list, which is initialized with any iterable, you should normalliy
initialize it with a single-element list of strings. If you initialize it directly with a string, the constructor will treat that
string as an iterable and create one child element for every character in the string.

49

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Ferenda Documentation, Release 0.3.1.dev1

6.1 Creating your own element classes

The exact structure of documents differ greatly. A general document format such as XHTML or ODF cannot contain
special constructs for preamble recitals of EC directives or patent claims of US patents. But your own code can create
new classes for this. Example:

from ferenda.elements import CompoundElement, OrdinalElement

class Preamble(CompoundElement): pass
class PreambleRecital(CompoundElement,OrdinalElement):

tagname = "div"
rdftype = "eurlex:PreambleRecital"

doc = Preamble([PreambleRecital("Un",ordinal=1)],
[PreambleRecital("Deux",ordinal=2)],
[PreambleRecital("Trois",ordinal=3)])

6.2 Mixin classes

As the above example shows, it’s possible and even recommended to use multiple inheritance to compose objects
by subclassing two classes – one main class who’s semantics you’re extending, and one mixin class that contains
particular properties. The following classes are useful as mixins:

• OrdinalElement: for representing elements with some sort of ordinal numbering. An ordinal element has
an ordinal property, and different ordinal objects can be compared or sorted. The sort is based on the ordinal
property. The ordinal property is a string, but comparisons/sorts are done in a natural way, i.e. “2” < “2 a” <
“10”.

• TemporalElement: for representing things that has a start and/or a end date. A temporal element has an
in_effect method which takes a date (or uses today’s date if none given) and returns true if that date falls
between the start and end date.

6.3 Rendering to XHTML

The built-in classes are rendered as XHTML by the built-in method render_xhtml(), which first creates a
<head> section containing all document-level metadata (i.e. the data you have specified in your documents meta
property), and then calls the as_xhtml method on the root body element. The method is called with doc.uri as a
single argument, which is then used as the RDF subject for all triples in the document (except for those sub-elements
which themselves have a uri property)

All built-in element classes derive from AbstractElement, which contains a generic implementation of
as_xhtml(), that recursively creates a lxml element tree from itself and it’s children.

Your own classes can specify how they are to be rendered in XHTML by overriding the tagname and classname
properties, or for full control, the as_xhtml() method.

As an example, the class SectionalElement overrides as_xhtml to the effect that if you provide identifier,
ordinal and title properties for the object, a resource URI is automatically constructed and four RDF triples are
created (rdf:type, dcterms:title, dcterms:identifier, and bibo:chapter):

from ferenda.elements import SectionalElement
p = SectionalElement(["Some content"],

ordinal = "1a",

(continues on next page)

50 Chapter 6. Building structured documents

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

identifier = "Doc pt 1(a)",
title="Title or name of the part")

body = Body([p])
from lxml import etree
etree.tostring(body.as_xhtml("http://example.org/doc"))

. . . which results in:

<body xmlns="http://www.w3.org/1999/xhtml" about="http://example.org/doc">
<div about="http://example.org/doc#S1a"

typeof="bibo:DocumentPart"
property="dcterms:title"
content="Title or name of the part"
class="sectionalelement">

<span href="http://example.org/doc"
rel="dcterms:isPartOf" />

<span about="http://example.org/doc#S1a"
property="dcterms:identifier"
content="Doc pt 1(a)" />

<span about="http://example.org/doc#S1a"
property="bibo:chapter"
content="1a" />

Some content
</div>

</body>

However, this is a convenience method of SectionalElement, amd may not be appropriate for your needs. The general
way of attaching metdata to document parts, as specified in Metadata about parts of the document, is to provide each
document part with a uri and meta property. These are then automatically serialized as RDFa statements by the
default as_xhtml implementation.

6.4 Convenience methods

Your element tree structure can be serialized to well-formed XML using the serialize() method. Such a serial-
ization can be turned back into the same tree using deserialize(). This is primarily useful during debugging.

You might also find the as_plaintext method useful. It works similar to as_xhtml, but returns a plaintext string
with the contents of an element, including all sub-elements

The ferenda.elements.html module contains the method elements_from_soup() which converts a
BeautifulSoup tree into the equivalent tree of element objects.

6.4. Convenience methods 51

Ferenda Documentation, Release 0.3.1.dev1

52 Chapter 6. Building structured documents

CHAPTER 7

Parsing document structure

In many scenarios, the basic steps in parsing source documents are similar. If your source does not contain properly
nested structures that accurately represent the structure of the document (such as well-authored XML documents), you
will have to re-create the structure that the author intended. Usually, text formatting, section numbering and other
clues contain just enough information to do that.

In many cases, your source document will naturally be split up in a large number of “chunks”. These chunks may
be lines or paragraphs in a plaintext documents, or tags of a certain type in a certain location in a HTML document.
Regardless, it is often easy to generate a list of such chunks. See, in particular, Reading files in various formats.

Note: For those with a background in computer science and formal languages, a chunk is sort of the same thing as a
token, but whereas a token typically is a few characters in length, a chunk is typically one to several sentences long.
Splitting up a documents in chunks is also typically much simpler than the process of tokenization.

These chunks can be fed to a finite state machine, which looks at each chunk, determines what kind of structural
element it probably is (eg. a headline, the start of a chapter, a item in a bulleted list. . .) by looking at the chunk
in the context of previous chunks, and then explicitly re-creates the document structure that the author (presumably)
intended.

7.1 FSMParser

The framework contains a class for creating such state machines, FSMParser. It is used with a set of the following
objects:

Object Purpose
Recognizers Functions that look at a chunk and determines if it is a particular structural element.
Constructors Functions that creates a document element from a chunk (or series of chunks)
States Identifiers for the current state of the document being parsed, ie. “in-preamble”, “in-ordered-list”
Transitions mapping (current state(s), recognizer) -> (new state, constructor)

53

Ferenda Documentation, Release 0.3.1.dev1

You initialize the parser with the transition table (which contains the other objects), then call it’s parse() method with
a iterator of chunks, an initial state, and an initial constructor. The result of parse is a nested document object tree.

7.2 A simple example

Consider a very simple document format that only has three kinds of structural elements: a normal paragraph, prefor-
matted text, and sections. Each section has a title and may contain paragraphs or preformatted text, which in turn may
not contain anything else. All chunks are separated by double newlines

The section is identified by a header, which is any single-line string followed by a line of = characters of the same
length. Any time a new header is encountered, this signals the end of the current section:

This is a header
================

A preformatted section is any chunk where each line starts with at least two spaces:

some example of preformatted text
def world(name):

return "Hello", name

A paragraph is anything else:

This is a simple paragraph.
It can contain short lines and longer lines.

(You might recognize this format as a very simple form of ReStructuredText).

Recognizers for these three elements are easy to build:

from ferenda import elements, FSMParser

def is_section(parser):
chunk = parser.reader.peek()
lines = chunk.split("\n")
return (len(lines) == 2 and

len(lines[0]) == len(lines[1]) and
lines[1] == "=" * len(lines[0]))

def is_preformatted(parser):
chunk = parser.reader.peek()
lines=chunk.split("\n")
not_indented = lambda x: not x.startswith(" ")
return len(list(filter(not_indented,lines))) == 0

def is_paragraph(parser):
return True

The elements module contains ready-built classes which we can use to build our constructors:

def make_body(parser):
b = elements.Body()
return parser.make_children(b)

def make_section(parser):
chunk = parser.reader.next()

(continues on next page)

54 Chapter 7. Parsing document structure

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

title = chunk.split("\n")[0]
s = elements.Section(title=title)
return parser.make_children(s)

setattr(make_section,'newstate','section')

def make_paragraph(parser):
return elements.Paragraph([parser.reader.next()])

def make_preformatted(parser):
return elements.Preformatted([parser.reader.next()])

Note that any constructor which may contain sub-elements must itself call the make_children() method of the
parser. That method takes a parent object, and then repeatedly creates child objects which it attaches to that parent
object, until a exit condition is met. Each call to create a child object may, in turn, call make_children (not so in this
very simple example).

The final step in putting this together is defining the transition table, and then creating, configuring and running the
parser:

transitions = {("body", is_section): (make_section, "section"),
("section", is_paragraph): (make_paragraph, None),
("section", is_preformatted): (make_preformatted, None),
("section", is_section): (False, None)}

text = """First section
=============

This is a regular paragraph. It will not be matched by is_section
(unlike the above chunk) or is_preformatted (unlike the below chunk),
but by the catch-all is_paragraph. The recognizers are run in the
order specified by FSMParser.set_transitions().

This is a preformatted section.
It could be used for source code,

+-------------------+
| line drawings |
+-------------------+

or what have you.

Second section
==============

The above new section implicitly closed the first section which we
were in. This was made explicit by the last transition rule, which
stated that any time a section is encountered while in the "section"
state, we should not create any more children (False) but instead
return to our previous state (which in this case is "body", but for a
more complex language could be any number of states)."""

p = FSMParser()
p.set_recognizers(is_section, is_preformatted, is_paragraph)
p.set_transitions(transitions)
p.initial_constructor = make_body
p.initial_state = "body"
body = p.parse(text.split("\n\n"))
print(elements.serialize(body))

7.2. A simple example 55

Ferenda Documentation, Release 0.3.1.dev1

The result of this parse is the following document object tree (passed through serialize()):

<Body>
<Section title="First section">
<Paragraph>

<str>This is a regular paragraph. It will not be matched by is_section
(unlike the above chunk) or is_preformatted (unlike the below chunk),
but by the catch-all is_paragraph. The recognizers are run in the
order specified by FSMParser.set_transitions().</str>

</Paragraph><Preformatted>
<str> This is a preformatted section.

It could be used for source code,
+-------------------+
| line drawings |
+-------------------+

or what have you.</str>
</Preformatted>

</Section>
<Section title="Second section">
<Paragraph>

<str>The above new section implicitly closed the first section which we
were in. This was made explicit by the last transition rule, which
stated that any time a section is encountered while in the "section"
state, we should not create any more children (False) but instead
return to our previous state (which in this case is "body", but for a
more complex language could be any number of states).</str>

</Paragraph>
</Section>

</Body>

7.3 Writing complex parsers

7.3.1 Recognizers

Recognizers are any callables that can be called with the parser object as only parameter (so no class- or instancemeth-
ods). Objects that implement __call__ are OK, as are lambda functions.

One pattern to use when creating parsers is to have a method on your docrepo class which defines a number of nested
functions, then creates a transition table using those functions, create the parser with that transition table, and then
return the initialized parser object. Your main parse method can then call this method, break the input document into
suitable chunks, then call parse on the recieved parser object.

7.3.2 Constructors

Like recognizers, constructors may be any callable, and they are called with the parser object as the only parameter.

Constructors that return elements which in themselves do not contain sub-elements are simple to write – just return
the created element (see eg make_paragraph or make_preformatted above).

Constructors that are to return elements that may contain subelement must first create the element, then call
parser.:meth:ferenda.FSMParser.make_children with that element as a single argument. make_children will treat

56 Chapter 7. Parsing document structure

Ferenda Documentation, Release 0.3.1.dev1

that element as a list, and append any sub-elements created to that list, before returning it.

7.3.3 The parser object

The parser object is passed to every recognizer and constructor. The most common use is to read the next available
chunk from it’s reader property – this is an instance of a simple wrapper around the stream of chunks. The reader has
two methods: peek and next, which both returns the next available chunk, but next also consumes the chunk in
question. A recognizer typically calls parser.reader.peek(), a constructor typically calls parser.reader.
next().

The parser object also has the following properties

Property Description
cur-
rentstate

The current state of the parser, using whatever value for state that was defined in the transition table
(typically a string)

debug boolean that indicates whether to emit debug messages (by default False)

There is also a parser._debug() method that emits debug messages, indicating current parser nesting level and
current state, if parser.debug is True

7.3.4 The transition table

The transition table is a mapping between (currentstate(s), successful recognizer) and
(constructor-or-false,newstate-or-None)

The transition table is used in the following way: All recognizers that can be applicable in the current state are tried
in the specified order until one of them returns True. Using this pair of (currentstate, recognizer), the corresponding
value tuple is looked up in the transition table.

constructor-or-False: . . .

newstate-or-None: . . .

The key in the transition table can also be a callable, which is called with (currentstate,symbol,parser?) and is expected
to return a (constructor-or-false,newstate-or-None) tuple

7.4 Tips for debugging your parser

Two useful commands in the Devel module:

$ # sets debug, prints serialize(parser.parse(...))
$./ferenda-build.py devel fsmparse parser < chunks
$ # sets debug, returns name of matching function
$./ferenda-build.py devel fsmanalyze parser <currentstate> < chunk

7.4. Tips for debugging your parser 57

Ferenda Documentation, Release 0.3.1.dev1

58 Chapter 7. Parsing document structure

CHAPTER 8

Citation parsing

In many cases, the text in the body of a document contains references (citations) to other documents in the same
or related document collections. A good implementation of a document repository needs to find and express these
references. In ferenda, references are expressed as basic hyperlinks which uses the rel attribute to specify the sort
of relationship that the reference expresses. The process of citation parsing consists of analysing the raw text, finding
references within that text, constructing sensible URIs for each reference, and formatting these as <a href="..."
rel="...">[citation] style links.

Since standards for expressing references / citations are very diverse, Ferenda requires that the docrepo programmer
specifies the basic rules of how to recognize a reference, and how to put together the properties from a reference (such
as year of publication, or page) into a URI.

8.1 The built-in solution

Ferenda uses the Pyparsing library in order to find and process citations. As an example, we’ll specify citation patterns
and URI formats for references that occurr in RFC documents. These are primarily of three different kinds (examples
come from RFC 2616):

1. URL references, eg “GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1”

2. IETF document references, eg “STD 3”, “BCP 14” and “RFC 2068”

3. Internal endnote references, eg “[47]” and “[33]”

We’d like to make sure that any URL reference gets turned into a link to that same URL, that any IETF document
reference gets turned into the canonical URI for that document, and that internal endote references gets turned into
document-relative links, eg “#endnote-47” and “#endnote-33”. (This requires that other parts of the parse() process
has created IDs for these in doc.body, which we assume has been done).

Turning URL references in plain text into real links is so common that ferenda has built-in support for this. The
support comes in two parts: First running a parser that detects URLs in the textual content, and secondly, for each
match, running a URL formatter on the parse result.

At the end of your parse() method, do the following.

59

http://pyparsing.wikispaces.com/
http://www.w3.org/pub/WWW/TheProject.html

Ferenda Documentation, Release 0.3.1.dev1

from ferenda import CitationParser
from ferenda import URIFormatter
import ferenda.citationpatterns
import ferenda.uriformats

CitationParser is initialized with a list of pyparsing
ParserElements (or any other object that has a scanString method
that returns a generator of (tokens,start,end) tuples, where start
and end are integer string indicies and tokens are dict-like
objects)
citparser = CitationParser(ferenda.citationpatterns.url)

URIFormatter is initialized with a list of tuples, where each
tuple is a string (identifying a named ParseResult) and a function
(that takes as a single argument a dict-like object and returns a
URI string (possibly relative)
citparser.set_formatter(URIFormatter(("URLRef", ferenda.uriformats.url)))

citparser.parse_recursive(doc.body)

The parse_recursive() takes any elements document tree and modifies it in-place to mark up any references
to proper Link objects.

8.2 Extending the built-in support

Building your own citation patterns and URI formats is fairly simple. First, specify your patterns in the form of a py-
parsing parseExpression, and make sure that both the expression as a whole, and any individual significant properties,
are named by calling .setResultName.

Then, create a set of formatting functions that takes the named properties from the parse expressions above and use
them to create a URI.

Finally, initialize a CitationParser object from your parse expressions and a URIFormatter object that maps
named parse expressions to their corresponding URI formatting function, and call parse_recursive()

from pyparsing import Word, nums

from ferenda import CitationParser
from ferenda import URIFormatter
import ferenda.citationpatterns
import ferenda.uriformats

Create two ParserElements for IETF document references and internal
references
rfc_citation = "RFC" + Word(nums).setResultsName("RFCRef")
bcp_citation = "BCP" + Word(nums).setResultsName("BCPRef")
std_citation = "STD" + Word(nums).setResultsName("STDRef")
ietf_doc_citation = (rfc_citation | bcp_citation | std_citation).setResultsName(
→˓"IETFRef")

endnote_citation = ("[" + Word(nums).setResultsName("EndnoteID") + "]").
→˓setResultsName("EndnoteRef")

Create a URI formatter for IETF documents (URI formatter for endnotes
is so simple that we just use a lambda function below

(continues on next page)

60 Chapter 8. Citation parsing

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

def rfc_uri_formatter(parts):
parts is a dict-like object created from the named result parts
of our grammar, eg those ParserElement for which we've called
.setResultsName(), in this case eg. {'RFCRef':'2068'}

NOTE: If your document collection contains documents of this
type and you're republishing them, feel free to change these
URIs to URIs under your control,
eg. "http://mynetstandards.org/rfc/%(RFCRef)s/" and so on
if 'RFCRef' in parts:

return "http://www.ietf.org/rfc/rfc%(RFCRef)s.txt" % parts
elif 'BCPRef' in parts:

return "http://tools.ietf.org/rfc/bcp/bcp%(BCPRef)s.txt" % parts
elif 'STDRef' in parts:

return "http://rfc-editor.org/std/std%(STDRef)s.txt" % parts
else:

return None

CitationParser is initialized with a list of pyparsing
ParserElements (or any other object that has a scanString method
that returns a generator of (tokens,start,end) tuples, where start
and end are integer string indicies and tokens are dict-like
objects)
citparser = CitationParser(ferenda.citationpatterns.url,

ietf_doc_citation,
endnote_citation)

URIFormatter is initialized with a list of tuples, where each
tuple is a string (identifying a named ParseResult) and a function
(that takes as a single argument a dict-like object and returns a
URI string (possibly relative)
citparser.set_formatter(URIFormatter(("url", ferenda.uriformats.url),

("IETFRef", rfc_uri_formatter),
("EndnoteRef", lambda d: "#endnote-%(EndnoteID)s

→˓" % d)))
citparser.parse_recursive(doc.body)

This turns this document

<body xmlns="http://www.w3.org/1999/xhtml" about="http://example.org/doc/">
<h1>Main document</h1>
<p>A naked URL: http://www.w3.org/pub/WWW/TheProject.html.</p>
<p>Some IETF document references: See STD 3, BCP 14 and RFC 2068.</p>
<p>An internal endnote reference: ...relevance ranking, cf. [47]</p>
<h2>References</h2>
<p id="endnote-47">47: Malmgren, Towards a theory of jurisprudential
ranking</p>

</body>

Into this document:

<body xmlns="http://www.w3.org/1999/xhtml" about="http://example.org/doc/">
<h1>Main document</h1>
<p>
A naked URL: <a href="http://www.w3.org/pub/WWW/TheProject.html"

rel="dcterms:references"
(continues on next page)

8.2. Extending the built-in support 61

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

>http://www.w3.org/pub/WWW/TheProject.html.
</p>
<p>
Some IETF document references: See
<a href="http://rfc-editor.org/std/std3.txt"

rel="dcterms:references">STD 3,
<a href="http://tools.ietf.org/rfc/bcp/bcp14.txt"

rel="dcterms:references">BCP 14 and
<a href="http://www.ietf.org/rfc/rfc2068.txt"

rel="dcterms:references">RFC 2068.
</p>

<p>
An internal endnote reference: ...relevance ranking, cf.
<a href="#endnote-47"

rel="dcterms:references">[47]
</p>
<h2>References</h2>
<p id="endnote-47">47: Malmgren, Towards a theory of jurisprudential
ranking</p>

</body>

8.3 Rolling your own

For more complicated situations you can skip calling parse_recursive() and instead do your own processing
with the optional support of CitationParser.

This is needed in particular for complicated ParserElement objects which may contain several sub-
ParserElement which needs to be turned into individual links. As an example, the text “under Article 56 (2),
Article 57 or Article 100a of the Treaty establishing the European Community” may be matched by a single top-level
ParseResult (and probably must be, if “Article 56 (2)” is to actually reference article 56(2) in the Treaty), but should
be turned in to three separate links.

In those cases, iterate through your doc.body yourself, and for each text part do something like the following:

from ferenda import CitationParser, URIFormatter, citationpatterns, uriformats
from ferenda.elements import Link

citparser = CitationParser()
citparser.add_grammar(citationpatterns.url)
formatter = URIFormatter(("url", uriformats.url))

res = []
text = "An example: http://example.org/. That is all."

for node in citparser.parse_string(text):
if isinstance(node,str):

non-linked text, add and continue
res.append(node)

if isinstance(node, tuple):
(text, match) = node
uri = formatter.format(match)
if uri:

res.append(Link(uri, text, rel="dcterms:references"))

62 Chapter 8. Citation parsing

CHAPTER 9

Reading files in various formats

The first step of parsing a document is often getting actual text from a file. For plain text files, this is not a difficult
process, but for eg. Word and PDF documents some sort of library support is useful.

Ferenda contains three different classes that all deal with this problem. They do not have a unified interface, but instead
contain different methods depending on the structure and capabilities of the file format they’re reading.

9.1 Reading plain text files

The TextReader class works sort of like a regular file object, and can read a plain text file line by line, but contains
extra methods for reading files paragraph by paragraph or page by page. It can also produce generators that yield the
file contents divided into arbitrary chunks, which is suitable as input for FSMParser.

9.2 Microsoft Word documents

The WordReader class can read both old-style .doc files and newer, XML-based .docx files. The former requires
that antiword is installed, but the latter has no additional dependencies.

This class does not present any interface for actually reading the word document – instead, it converts the document
to a XML file which is either based on the docbook output of antiword, or the raw OOXML found inside of the
.docx file.

9.3 PDF documents

PDFReader reads PDF documents and makes them available as a list of pages, where each page contains a list of
Textbox objects, which in turn contains a list of Textelement objects.

Its textboxes() method is a flexible way of getting a generator of suitable text chunks. By passing a “glue”
function to that method, you can specify exact rules on which rows of text should be combined to form larger suitable
chunks (eg. paragraphs). This stream of chunks can be fed directly as input to FSMParser.

63

http://www.winfield.demon.nl/

Ferenda Documentation, Release 0.3.1.dev1

9.3.1 Handling non-PDFs and scanned documents

The class can also handle any other type of document (such as Word/OOXML/WordPerfect/RTF) that OpenOffice or
LibreOffice handles by first converting it to PDF using the soffice command line tool. This is done by specifiying
the convert_to_pdf parameter.

If the PDF contains only scanned pages (without any OCR information), the pages can be run through the tesseract
command line tool. You need to provide the main language of the document as the ocr_lang parameter, and you
need to have installed the tesseract language files for that language.

9.3.2 Analyzing PDF documents

When processing a PDF file, the information contained in eg a Textbox object (position, size, font) is useful to
determine what kind of content it might be, eg. if it’s set in a header-like font, it probably signals the start of a section,
and if it’s a digit-like text set in a small font outside of the main content area, it’s probably a page number.

Information about eg page margins, header styles etc can be hardcoded in your processing code, but it’s also possible
to use the companion class PDFAnalyzer can be used to statistically analyze a complete document and then make
educated guesses about these metrics. It can also output histogram plots and an annotated version of the original PDF
file with lines marking the identified margins, styles and text chunks (given a provided “glue” function identical to the
one provided to textboxes())

The class is designed to be overridden if your document has particular rules about eg. header styles or additional
margin metrics.

64 Chapter 9. Reading files in various formats

CHAPTER 10

Grouping documents with facets

A collection of documents can be arranged in a set of groups, such as by year of publication, by document author, or
by keyword. With Ferenda, each such method of grouping is described in the form of a Facet. By providing a list
of Facet objects in its facets() method, your docrepo can specify multiple ways of arranging the documents it’s
handling. These facets are used to construct a static Table of contents for your site, as well as creating Atom feeds of
all documents and defining the fields available for querying when using the REST API.

A facet object is initialized with a set of parameters that, taken together, define the method of grouping. These include
the RDF predicate that contains the data used for grouping, the datatype to be used for that data, functions (or other
callables) that sorts the data into discrete groups, and other parameters that affect eg. the sorting order or if a particular
facet is used in a particular context.

10.1 Applying facets

Facets are used in several different contexts (see below) but the general steps for applying them are similar. First, all
the data that might be needed by the total set of facets is collected. This is normally done by querying the triple store
for it. Each facet contains information about which RDF predicate

Once this set of data is retrieved, as a giant table with one row for each resource (document), each facet is used to
create a set of groups and place each document in zero or more of these groups.

10.2 Selectors and identificators

The grouping is primarily done through a selector function. The selector function recieves three arguments:

• a dict with some basic information about one document (corresponding to one row),

• the name of the current facet (binding), and

• optionally some repo-dependent extra data in the form of an RDF graph.

It should return a single string, which should be a human-readable label for a grouping. The selector is called once
for every document in the docrepo, and each document is sorted in one (or more, see below) group identified by that

65

Ferenda Documentation, Release 0.3.1.dev1

string. As a simple example, a selector may group documents into years of publication by finding the date of the
dcterms:issued property and extracting the year part of it. The string returned by the should be suitable for
end-user display.

Each facet also has a similar function called the identificator function. It recieves the same arguments as the selector
function, but should return a string that is well suited for eg. a URI fragment, ie. not contain spaces or non-ascii
characters.

The Facet class has a number of classmethods that can act as selectors and/or identificators.

10.3 Contexts where facets are used

10.3.1 Table of contents

Each docrepo will have their own set of Table of contents pages. The TOC for a docrepo will contain one set of pages
for each defined facet, unless use_for_toc is set to False.

10.3.2 Atom feeds

Each docrepo will have a set of feedsets, where each feedset is based on a facet (only those that has the property
use_for_feed set to True). The structure of each feedset will mirror the structure of each set of TOC pages,
and re-uses the same selector and identificator methods. It makes sense to have a separate feed for eg. each pub-
lisher or subject matter in a repository that comprises a reasonable amount of publishers and subject matters (using
dcterms:publisher or dcterms:subject as the base for facets), but it does not make much sense to eg. have
a feed for all documents published in 1975 (using dcterms:published as the base for a facet). Therefore, the
default value for use_for_feed is False.

Furthermore, a “main” feedset with a single feed containing all documents is also constructed.

The feeds are always sorted by the updated property (most recent updated first), taken from the corresponding
DocumentEntry object.

10.3.3 The fulltext index

The metadata that each facet uses is stored as a separate field in the fulltext index. Facet can specify exactly how a
particular facet should be stored (ie if the field should be boosted in any particular way). Note that the data stored in
the fulltext index is not passed through the selector function, the original RDF data is stored as-is.

10.3.4 The ReST API

The ReST API uses all defined facets for all repos simultaneously. This means that you can query eg. all documents
published in a certain year, and get results from all docrepos. This requires that the defined facets don’t clash, eg. that
you don’t have two facets based on dcterms:publisher where one uses URI references and the other uses.

10.4 Grouping a document in several groups

If a docrepo uses a facet that has multiple_values set to True, it’s possible for that facet to categorize the
document in more than one group (a typical usecase is documents that have multiple dcterms:subject keywords,
or articles that have multiple dcterms:creator authors).

66 Chapter 10. Grouping documents with facets

Ferenda Documentation, Release 0.3.1.dev1

10.5 Combining facets from different docrepos

Facets that map to the same fulltextindex field must be equal. The rules for equality: If the rdftype and the
dimension_type and dimension_label and selector is equal, then the facets are equal. selector
functions are only equal if they are the same function object, ie it’s not just enough that they are two functions that
work identically.

10.5. Combining facets from different docrepos 67

Ferenda Documentation, Release 0.3.1.dev1

68 Chapter 10. Grouping documents with facets

CHAPTER 11

Customizing the table(s) of content

In order to make the processed documents in a docrepo accessible for a website visitors, some sort of index or table of
contents (TOC) that lists all available documents must be created. It’s often helpful to create different lists depending
on different facets of the information in documents, eg. to sort document by title, publication date, document status,
author and similar properties.

Ferenda contains a number of methods that help with this task. The general process has three steps:

1. Determine the criteria for how to group and sort all documents

2. Query the triplestore for basic information about all documents in the docrepo

3. Apply these criteria on the basic information from the database

It should be noted that you don’t need to do anything in order to get a very basic TOC. As long as your parse()
step has extracted a dcterms:title string and optionally a dcterms:issued date for each document, you’ll
get basic “Sorted by title” and “Sorted by date of publication” TOCs for free.

11.1 Defining facets for grouping and sorting

A facet in this case is a method for grouping a set into documents into distinct categories, then sorting the documents,
as well as the categories themseves.

Each facet is represented by a Facet object. If you want to customize the table of contents, you have to provide a list
of these by overriding facets().

The basic way to do this is to initialize each Facet object with a rdf predicate. Ferenda has some basic knowledge
about some common predicates and know how to construct sensible Facet objects for them – ie. if you specify the
predicate dcterms:issued, you get a Facet object that groups documents by year of publication and sorts each
group by date of publication.

def facets(self):
from ferenda import Facet
return [Facet(self.ns['dcterms'].issued),

Facet(self.ns['dcterms'].identifier)]

69

Ferenda Documentation, Release 0.3.1.dev1

You can customize the behaviour of each Facet by providing extra arguments to the constructor.

The label and pagetitle parameters are useful to control the headings and labels for the generated pages. They
should hopefully be self-explainatory.

The selector and key parameters should be functions (or any other callable) that accept a dictionary of string
values, one string which is generally a key on the dictionary, and one rdflib graph containing whatever commondata.
These functions are called once each for each row in the result set generated in the next step (see below) with the
contents of that row. They should each return a single string value. The selector function should return the label
of a group that the document belongs to, i.e. the initial letter of the title, or the year of a publication date. The key
function should return a value that will be used for sorting, i.e. for document titles it could return the title without any
leading “The”, lowercased, spaces removed etc. See also Grouping documents with facets.

11.2 Getting information about all documents

The next step is to perform a single SELECT query against the triplestore that retrieves a single large table, where
each document is a row with a number of properties.

(This is different from the case of getting information related to a particular document, in that case, a CONSTRUCT
query that retrieves a small RDF graph is used).

Your list of Facet objects returned by facets() is used to automatically select all data from the SPARQL store.

11.3 Making the TOC pages

The final step is to apply these criteria to the table of document properties in order to create a set of static HTML5
pages. This is in turn done in three different sub-steps, neither of which you’ll have to override.

The first sub-step, toc_pagesets(), applies the defined criteria to the data fetched from the triple store to calculate
the complete set of TOC pages needed for each criteria (in the form of a TocPageset object, filled with TocPage
objects). If your criteria groups documents by year of publication date, this method will yield one page for every year
that at least one document was published in.

The next sub-step, toc_select_for_pages(), applies the criteria on the data again, and adds each document to
the appropriate TocPage object.

The final sub-step transforms each of these TocPage objects into a HTML5 file. In the process, the method
toc_item() is called for every single document listed on every single TOC page. This method controls how each
document is presented when laid out. It’s called with a dict and a binding (same as used on the selector and key
functions), and is expected to return a list of elements objects.

As an example, if you want to group by dcterms:identifier, but present each document with
dcterms:identifier + dcterms:title:

def toc_item(self, binding, row):
note: look at binding to determine which pageset is being
constructed in case you want to present documents in
different ways depending on that.
from ferenda.elements import Link
return [row['identifier'] + ": ",

Link(row['title'],
uri=row['uri'])]

The generated TOC pages automatically get a visual representation of each calculated TocPageset in the left naviga-
tional column.

70 Chapter 11. Customizing the table(s) of content

Ferenda Documentation, Release 0.3.1.dev1

11.4 The first page

The main way in to each docrepos set of TOC pages is through the tabs in the main header. That link goes to a special
copy of the first page in the first pageset. The order of criteria specified by facets() is therefore important.

11.4. The first page 71

Ferenda Documentation, Release 0.3.1.dev1

72 Chapter 11. Customizing the table(s) of content

CHAPTER 12

Customizing the news feeds

During the news step, all documents in a docrepo are published in one or more feeds. Each feed is made available in
both Atom and HTML formats. You can control which feeds are created, and which documents are included in each
feed, by the facets defined for your repo. The process is similar to defining criteria for the TOC pages.

The main differences are:

• Most properties/RDF predicates of a document are not suitable as facets for news feed (it makes little sense
to have a feed for eg. dcterms:title or dcterms:issued). By default, only rdf:type and
dcterms:publisher based facets are used for news feed generation. You can control this by specifying
the use_for_feed constructor argument.

• The dict that is passed to the selector and identificator functions contains extra fields from the correspond-
ing DocumentEntry object. Particularly, the updated value might be used by your key func in order to
sort all entries by last-updated-date. The summary value might be used to contain a human-readable sum-
mary/representation of the entire document.

• Each row is passed through the news_item() method. You may override this in order to change the title
or summary of each feed entry for the particular feed being constructed (as determined by the binding
argument).

• A special feed, containing all entries within the docrepo, is always created.

73

Ferenda Documentation, Release 0.3.1.dev1

74 Chapter 12. Customizing the news feeds

CHAPTER 13

The WSGI app

All ferenda projects contains a built-in web application. This app provides navigation, document display and search.

13.1 Running the web application

During development, you can just ferenda-build.py runserver. This starts up a single-threaded web server
in the foreground with the web application, by default accessible as http://localhost:8000/

You can also run the web application under any WSGI server, such as mod_wsgi, uWSGI or Gunicorn.
ferenda-setup creates a file called wsgi.py alongside ferenda-build.py which is used to serve the fer-
enda web app using WSGI. This is the contents of that file:

from ferenda.manager import make_wsgi_app
inifile = os.path.join(os.path.dirname(__file__), "ferenda.ini")
application = make_wsgi_app(inifile=inifile)

13.1.1 Apache and mod_wsgi

In your httpd.conf:

WSGIScriptAlias / /path/to/project/wsgi.py
WSGIPythonPath /path/to/project
<Directory /path/to/project>

<Files wsgi.py>
Order deny,allow
Allow from all

</Files>
</Directory>

The ferenda web app consists mainly of static files. Only search and API requests are dynamically handled. By default
though, all static files are served by the ferenda web app. This is simple to set up, but isn’t optimal performance-wise.

75

http://wsgi.readthedocs.org/en/latest/
http://code.google.com/p/modwsgi/
https://uwsgi-docs.readthedocs.org/en/latest/index.html
http://gunicorn.org/

Ferenda Documentation, Release 0.3.1.dev1

13.1.2 Gunicorn

Just run gunicorn wsgi:application

13.2 URLs for retrieving resources

In keeping with Linked Data principles, all URIs for your documents should be retrievable. By default, all URIs for
your documents start with http://localhost:8000/res (e.g. http://localhost:8000/res/rfc/
4711 – this is controlled by the url parameter in ferenda.ini). These URIs are retrievable when you run the
built-in web server during development, as described above.

13.2.1 Document resources

For each resource, use the Accept header to retrieve different versions of it:

• curl -H "Accept: text/html" http://localhost:8000/res/rfc/4711 returns rfc/
generated/4711.html

• curl -H "Accept: application/xhtml+xml" http://localhost:8000/res/rfc/
4711 returns rfc/parsed/4711.xhtml

• curl -H "Accept: application/rdf+xml" http://localhost:8000/res/rfc/4711
returns rfc/distilled/4711.rdf

• curl -H "Accept: text/turtle" http://localhost:8000/res/rfc/4711 returns
rfc/distilled/4711.rdf, but in Turtle format

• curl -H "Accept: text/plain" http://localhost:8000/res/rfc/4711 returns rfc/
distilled/4711.rdf, but in NTriples format

You can also get extended information about a single document in various RDF flavours. This extended information
includes everything that construct_annotations() returns, i.e. information about documents that refer to this
document.

• curl -H "Accept: application/rdf+xml" http://localhost:8000/res/rfc/4711/
data returns a RDF/XML combination of rfc/distilled/4711.rdf and rfc/annotation/4711.
grit.xml

• curl -H "Accept: text/turtle" http://localhost:8000/res/rfc/4711/data
returns the same in Turtle format

• curl -H "Accept: text/plain" http://localhost:8000/res/rfc/4711/data returns
the same in NTriples format

• curl -H "Accept: application/json" http://localhost:8000/res/rfc/4711/
data returns the same in JSON-LD format.

13.2.2 Dataset resources

Each docrepo exposes information about the data it contains through it’s dataset URI. This is a single URI (controlled
by dataset_uri()) which can be queried in a similar way as the document resources above:

• curl -H "Accept: application/html" http://localhost/dataset/rfc returns a
HTML view of a Table of Contents for all documents (see Customizing the table(s) of content)

• curl -H "Accept: text/plain" http://localhost/dataset/rfc returns rfc/
distilled/dump.nt which contains all RDF statements for all documents in the repository.

76 Chapter 13. The WSGI app

http://www.w3.org/DesignIssues/LinkedData.html

Ferenda Documentation, Release 0.3.1.dev1

• curl -H "Accept: application/rdf+xml" http://localhost/dataset/rfc returns
the same, but in RDF/XML format.

• curl -H "Accept: text/turtle" http://localhost/dataset/rfc returns the same, but
in turtle format.

13.2.3 File extension content negotiation

In some environments, it might be difficult to set the Accept header. Therefore, it’s also possible to request different
versions of a resource using a file extension suffix. Ie. requesting http://localhost:8000/res/base/123.
ttl gives the same result as requesting the resource http://localhost:8000/res/base/123 using the
Accept: text/turtle header. The following extensions can be used

Content-type Extension
application/xhtml+xml .xhtml
application/rdf+xml .rdf
text/turtle .ttl
text/plain .nt
application/json .json

See also The ReST API for querying.

13.2.4 Using develurl during development

When deploying, you won’t use http://localhost:8000/ in your public-facing URLs. Instead, come up with an external
base url such as http://example.org/netstandards/, and in ferenda.ini set:

[__root__]
url=http://example.org/netstandards/
develurl=http://localhost:8000/

This will make all uris in parsed and generated documents on the form http://example.org/netstandards/res/rfc/4711,
but during devel still support http://localhost:8000/res/rfc/4711.

When you set url to a new value, you must re-run ./ferenda-build.py all generate --all
--force, ./ferenda-build.py all toc --force, ./ferenda-build.py all news --force
and ./ferenda-build.py all frontpage --force for it to take effect.

13.2. URLs for retrieving resources 77

http://localhost:8000/
http://example.org/netstandards/res/rfc/4711
http://localhost:8000/res/rfc/4711

Ferenda Documentation, Release 0.3.1.dev1

78 Chapter 13. The WSGI app

CHAPTER 14

The ReST API for querying

Ferenda tries to adhere to Linked Data principles, which makes it easy to explain how to get information about any
individual document or any complete dataset (see URLs for retrieving resources). Sometimes it’s desirable to query
for all documents matching a particular criteria, including full text search. Ferenda has a simple API, based on the
rinfo-service component of RDL, and inspired by Linked data API, that enables you to do that. This API only
provides search/select operations that returns a result list. For information about each individual result in that list, use
the methods described in URLs for retrieving resources.

Note: Much of the things described below are also possible to do in pure SPARQL. Ferenda does not expose any
open SPARQL endpoints to the world, though. But if you find the below API lacking in some aspect, it’s certainly
possible to directly expose your chosen triplestores SPARQL endpoint (as long as you’re using Fuseki or Sesame) to
the world.

The default endpoint to query is your main URL + /api/, eg. http://localhost:8000/api/. The requests
always use GET and encode their parameters in the URL, and the responses are always in JSON format.

14.1 Free text queries

The simplest form of query is a free text query that is run against all text of all documents. Use the parameter q,
eg. http://localhost:8000/api/?q=tail returns all documents (and document fragments) containing the
word “tail”.

14.2 Result lists

The result of a query will be a JSON document containing some general properties of the result, and a list of result
items, eg:

79

https://github.com/rinfo/rdl
https://code.google.com/p/linked-data-api/wiki/Specification

Ferenda Documentation, Release 0.3.1.dev1

{
"current": "/myapi/?q=tail",
"duration": null,
"items": [

{
"dcterms_identifier": "123(A)",
"dcterms_issued": "2014-01-04",
"dcterms_publisher": {

"iri": "http://example.org/publisher/A",
"label": "http://example.org/publisher/A"

},
"dcterms_title": "Example",
"matches": {

"text": " This is part of the main document, but not of any sub-
→˓resource. This is the <em class=\"match\">tail end of the main document"

},
"rdf_type": "http://purl.org/ontology/bibo/Standard",
"iri": "http://example.org/base/123/a"

}
],
"itemsPerPage": 10,
"startIndex": 0,
"totalResults": 1

}

Each result item contain all fields that have been indexed (as specified by your docrepos’ facets, see Grouping docu-
ments with facets, the document URI (as the field iri) and optionally a field matches that provides a snipped of the
matching text.

14.3 Parameters

Any indexed property, as defined by your facets, can be used for querying. The parameter is the
same as the qname for the rdftype with _ instead of :, eq to search all documents that have
dcterms:publisher set to `http://example.org/publisher/A, use http://localhost:8000/
api/?dcterms_publisher=http%3A%2F%2Fexample.org%2Fpublisher%2FA

You can use * as a wildcard for any string data, eg. the above could be shortened to http://localhost:8000/
api/?dcterms_publisher=*%2Fpublisher%2FA.

If you have a facet with a set dimension_label, you can use that label directly as a parameter, eg http://
localhost:8000/api/?aprilfools=true.

14.4 Paging

By default, the result list only contains 10 results. You can inspect the properties startIndex and totalResults
of the response to find out if there are more results, and use the special parameter _page to request subsequent pages
of results. You can also request a different length of the result list through the _pageSize parameter.

80 Chapter 14. The ReST API for querying

Ferenda Documentation, Release 0.3.1.dev1

14.5 Statistics

By requesting the special resource ;stats, eg http://localhost:8000/api/;stats, you can get a statis-
tics view over all documents in all your docrepos for each of your defined facets including the number of document
for each value of it’s selector, eg:

{
"type": "DataSet",
"slices": [

{
"dimension": "dcterms_issued",
"observations": [{

"count": 1,
"year": "2013"

}, {
"count": 2,
"year": "2014"

}]
},
{

"dimension": "dcterms_publisher",
"observations": [{

"count": 1,
"ref": "http://example.org/publisher/A"

}, {
"count": 2,
"ref": "http://example.org/publisher/B"

}]
}, {

"dimension": "rdf_type",
"observations": [

{"count": 3,
"term": "bibo:Standard"}

]
}]

}

You can also get the same information for the documents in any result list by setting the special parameter
_stats=on.

14.6 Ranges

For some parameters, particularly those that use datetime values, it’s useful to specify ranges instead of exact
values. By prefixing the parameter name with min-, max- or year-, it’s possible to do that, eg. http:/
/localhost:8000/api/?min-dcterms_issued=2012-04-01 to retrieve all documents that have a dc-
terms:issued later than 2012-04-01, or http://localhost:8000/api/?year-dcterms_issued=2012 to
retrieve all documents that are dct:issued during 2012.

14.7 Support resources

The special resources common.json and terms.json (eg. http://localhost:8000/api/common.
json and http://localhost:8000/api/terms.json) contains all the extra data (see Custom common

14.5. Statistics 81

Ferenda Documentation, Release 0.3.1.dev1

data) and ontologies (see Custom ontologies) that your repositories use, in JSON-LD format. You can use these to
display user-friendly labels for properties and things in your application.

14.8 Legacy mode

Ferenda can be made directly compatible with the API used by rinfo-service (mentioned above) by activating
the setting legacyapi, eg by setting legacyapi = True in ferenda.conf or using the option --legacyapi
on the command line.

Note that this setting is used both during the makeresources step as well as when serving the API eg with the
runserver command. If you want to play with this setting, you’ll need to re-run makeresources --force
with this enabled.

Running makeresources with this setting enabled also installs a API explorer app, taken from rinfo-service.
You can try it out at http://localhost:8000/rsrc/ui/.

82 Chapter 14. The ReST API for querying

CHAPTER 15

Setting up external databases

Ferenda stores data in three substantially different ways:

• Documents are stored in the file system

• RDF Metadata is stored in in a triple store

• Document text is stored in a fulltext search engine.

There are many capable and performant triple stores and fulltext search engines available, and ferenda supports a few
of them. The default choice for both are embedded solutions (using RDFLib + SQLite for a triple store and Whoosh for
a fulltext search engine) so that you can get a small system going without installing and configuring additional server
processess. However, these choices do not work well with medium to large datasets, so when you start feeling that
indexing and searching is getting slow, you should run an external triplestore and an external fulltext search engine.

If you’re using the project framework, you set the configuration values storetype and indextype to new values.
You’ll find that the ferenda-setup tool creates a ferenda.ini that specifies storetype and indextype,
based on whether it can find Fuseki, Sesame and/or ElasticSearch running on their default ports on localhost. You still
might have to do extra configuration, particularly if you’re using Sesame as a triple store.

If you setup any of the external databases after running ferenda-setup, or you want to use some other configu-
ration than what ferenda-setup selected for you, you can still set the configuration values in ferenda.ini by
editing the file as described below.

If you are running any of the external databases, but in a non-default location (including remote
locations) you can set the environment variables FERENDA_TRIPLESTORE_LOCATION and/or
FERENDA_FULLTEXTINDEX_LOCATION to the full URL before running ferenda-setup.

15.1 Triple stores

There are four choices.

83

http://en.wikipedia.org/wiki/Triplestore

Ferenda Documentation, Release 0.3.1.dev1

15.1.1 RDFLib + SQLite

In ferenda.ini:

[__root__]
storetype = SQLITE
storelocation = data/ferenda.sqlite # single file
storerepository = <projectname>

This is the simplest way to get up and running, requiring no configuration or installs on any platform.

15.1.2 RDFLib + Sleepycat (aka bsddb)

In ferenda.ini:

[__root__]
storetype = SLEEPYCAT
storelocation = data/ferenda.db # directory
storerepository = <projectname>

This requires that bsddb (part of the standard library for python 2) or bsddb3 (separate package) is available and
working (which can be a bit of pain on many platforms). Furthermore it’s less stable and slower than RDFLib +
SQLite, so it can’t really be recommended. But since it’s the only persistant storage directly supported by RDFLib,
it’s supported by Ferenda as well.

15.1.3 Sesame

In ferenda.ini:

[__root__]
storetype = SESAME
storelocation = http://localhost:8080/openrdf-sesame
storerepository = <projectname>

Sesame is a framework and a set of java web applications that normally runs within a Tomcat application server. If
you’re comfortable with Tomcat and servlet containers you can get started with this quickly, see their installation
instructions. You’ll need to install both the actual Sesame Server and the OpenRDF workbench.

After installing it and configuring ferenda.ini to use it, you’ll need to use the OpenRDF workbench app (at
http://localhost:8080/openrdf-workbench by default) to create a new repository. The recommended
settings are:

Type: Native Java store
ID: <projectname> # eg same as storerepository in ferenda.ini
Title: Ferenda repository for <projectname>
Triple indexes: spoc,posc,cspo,opsc,psoc

It’s much faster than the RDFLib-based stores and is fairly stable (although Ferenda’s usage patterns seem to some-
times make simple operations take a disproportionate amount of time).

15.1.4 Fuseki

In ferenda.ini:

84 Chapter 15. Setting up external databases

http://www.openrdf.org/index.jsp
http://www.openrdf.org/doc/sesame2/users/ch06.html
http://www.openrdf.org/doc/sesame2/users/ch06.html

Ferenda Documentation, Release 0.3.1.dev1

[__root__]
storetype = SESAME
storelocation = http://localhost:3030
storerepository = ds

Fuseki is a simple java server that implements most SPARQL standards and can be run without any complicated setup.
It can keep data purely in memory or store it on disk. The above configuration works with the default configuration of
Fuseki - just download it and run fuseki-server

Fuseki seems to be the fastest triple store that Ferenda supports, at least with Ferendas usage patterns. Since it’s also
the easiest to set up, it’s the recommended triple store once RDFLib + SQLite isn’t enough.

15.2 Fulltext search engines

There are two choices.

15.2.1 Whoosh

In ferenda.ini:

[__root__]
indextype = WHOOSH
indexlocation = data/whooshindex

Whoosh is an embedded python fulltext search engine, which requires no setup (it’s automatically installed when
installing ferenda with pip or easy_install), works reasonably well with small to medium amounts of data, and
performs quick searches. However, once the index grows beyond a few hundred MB, indexing of new material begins
to slow down.

15.2.2 Elasticsearch

In ferenda.ini:

[__root__]
indextype = ELASTICSEARCH
indexlocation = http://localhost:9200/ferenda/

Elasticsearch is a distributed fulltext search engine in java which can run in a distributed fashion and which is accessed
through a simple JSON/REST API. It’s easy to setup – just download it and run bin/elasticsearch as per the
instructions. Ferenda’s support for Elasticsearch is new and not yet stable, but it should be able to handle much larger
amounts of data.

15.2. Fulltext search engines 85

http://jena.apache.org/documentation/serving_data/
http://jena.apache.org/documentation/serving_data/#getting-started-with-fuseki
http://www.elasticsearch.org/guide/reference/setup/installation/

Ferenda Documentation, Release 0.3.1.dev1

86 Chapter 15. Setting up external databases

CHAPTER 16

Testing your docrepo

The module ferenda.testutil contains an assortment of classes and functions that can be useful when testing
code written against the Ferenda API.

16.1 Extra assert methods

The FerendaTestCase is intended to be used by your unittest.TestCase based testcases. Your testcase
inherits from both TestCase and FerendaTestCase, and thus gains new assert methods:

Method Description
assertEqualGraphs() Compares two Graph objects
assertEqualXML() Compares two XML documents (in string or lxml.etree form)
assertEqualDirs() Compares the files and contents of those files in two directories
assertAlmostEqualDatetime() Compares two datetime objects to a specified precision

16.2 Creating parametric tests

A parametric test case is a single unit of test code that, during test execution, is run several times with different
arguments (parameters). The function parametrize() creates a single new testcase, based upon a template method,
and binds the specified parameters to the template method. Each testcase is uniquely named based on the given
parameters. Since each invocation creates a new test case method, specific parameters can be tested in isolation, and
the normal unittest test runner reports exactly which parameters the test succeeds or fails with.

Often, the parameters to the test is best stored in files. The function file_parametrize() creates one testcase,
based upon a template method, for each file found in a specified directory.

87

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph

Ferenda Documentation, Release 0.3.1.dev1

16.3 RepoTester

Functional tests are written to test a specific functionality of a software system as a whole. This means that functional
tests excercize a larger portion of the code and is focused on what the behaviour (output) of the code should be, given a
particular input. A typical repository has at least three large units of code that benefits from a functional-level testing:
Code that performs downloading of documents, code that extracts metadata from downloaded documents, and code
that generates structured XHTML documents from the downloaded documents.

The RepoTester contains generic, parametric test for all three of these. In order to use them, you create test data
in some directory of your choice, create a subclass of RepoTester specifying the location of your test data and the
docrepo class you want to test: and finally call parametrize_repotester() in your top-level test code to set
up one test for each test data file that you’ve created.

from ferenda.testutil import RepoTester, parametrize_repotester
from ferenda.sources.tech import RFC

class RFCTester(RepoTester):
repoclass = RFC
docroot = "myrepo/tests/files"

parametrize_repotester(RFCTester)

16.4 Download tests

See download_test().

For each download test, you need to create a JSON file under the source directory of your docroot, eg: myrepo/
tests/files/source/basic.json that should look something like this:

{
"http://www.ietf.org/download/rfc-index.txt": {

"file":"index.txt",
"content-type":"text/plain"

},
"http://tools.ietf.org/rfc/rfc6953.txt": {

"file":"rfc6953.txt",
"content-type": "text/plain",
"expect": "downloaded/6953.txt"

}
}

Each key of the JSON object should be a URL, and the value should be another JSON object, that should have the key
file that specifies the relative location of a file that corresponds to that URL.

When each download test runs, calls to requests.get et al are intercepted and the given file is returned instead. This
allows you to run the download tests without hitting the remote server.

Each JSON object might also have the key expect, which indicates that the URL represents a document to be stored.
The value specifieds the location where the download method should store the corresponding file, if that particular
URL should be stored underneath the downloaded directory. In the above example, the index file is no

If you want to test your download code under any specific condition, you can specify a special @settings key.
Each key and sub-key underneath this will be set directly on the repo object being tested. For example, this sets the
next_sfsnr key of the config object on the repo to 2014:913.

88 Chapter 16. Testing your docrepo

Ferenda Documentation, Release 0.3.1.dev1

{
"@settings": {

"config": {"next_sfsnr": "2014:913"}
}

}

16.4.1 Recording download tests

If the environment variable FERENDA_SET_TESTFILE is set, the download code runs like normal (calls to re-
quests.get et al are not intercepted) and instead each accessed URL is stored in the JSON file. URL accessses that
results in downloaded files results in expect entries in the JSON file. This allows you to record the behaviour of
existing download code to examine it or just to make sure it doesn’t change inadvertantly.

16.5 Distill and parse tests

See distill_test() and parse_test().

To create a distill or parse test, you first need to create whatever files that your parse methods will need in the
download directory of your docroot.

Both distill_test() and parse_test() will run your parse method, and then compare it to expected results.
For distill tests, the expected result should be placed under distilled/[basefile].ttl. For parse tests, the
expected result should be placed under parsed/[basefile].xhtml.

16.5.1 Recording distill/parse tests

If the environment variable FERENDA_SET_TESTFILE is set, the parse code runs like normal and the result of the
parse is stored in eg. distilled/[basefile].ttl or parsed/[basefile].xhtml. This is a quick way
of recording existing behaviour as a baseline for your tests.

16.6 Py23DocChecker

Py23DocChecker is a small helper to enable you to write doctest-style tests that run unmodified under python 2
and 3. The main problem with cross-version compatible doctests is with functions that return (unicode) strings. These
are formatted u'like this' in Python 2, and 'like this' in Python 3. Writing doctests for functions that
return unicode strings requires you to choose one of these syntaxes, and the result will fail on the other platform. By
strictly running doctests from within the unittest framework through the load_tests mechanism, and loading
your doctests in this way, the tests will work even under Python 2:

from ferenda.testutil import Py23DocChecker
def load_tests(loader,tests,ignore):

tests.addTests(doctest.DocTestSuite(mymodule, checker=Py23DocChecker()))
return tests

16.7 testparser

testparser() is a simple helper that tests FSMParser based parsers.

16.5. Distill and parse tests 89

https://docs.python.org/3/library/unittest.html#module-unittest

Ferenda Documentation, Release 0.3.1.dev1

90 Chapter 16. Testing your docrepo

CHAPTER 17

Advanced topics

17.1 Composite docrepos

In some cases, a document collection may available from multiple sources, with varying degrees of completeness
and/or quality. For example, in a collection of US patents, some patents may be available in structured XML with
good metadata through a easy-to-use API, some in tag-soup style HTML with no metadata, requiring screenscraping,
and some in the form of TIFF files that you scanned yourself. The implementation of both download() and parse() will
differ wildly for these sources. You’ll have something like this:

from ferenda import DocumentRepository, CompositeRepository
from ferenda.decorators import managedparsing

class XMLPatents(DocumentRepository):
alias = "patxml"
required_predicates = []

def download(self, basefile = None):
download_from_api()

@managedparsing
def parse(self,doc):

self.parse_entry_update(doc)
return self.transform_patent_xml_to_xhtml(doc)

class HTMLPatents(DocumentRepository):
alias = "pathtml"

def download(self, basefile=None):
screenscrape()

@managedparsing
def parse(self,doc):

return self.analyze_tagsoup(doc)

(continues on next page)

91

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

class ScannedPatents(DocumentRepository):
alias = "patscan"

Assume that we, when we scanned the documents, placed them in their
correct place under data/patscan/downloaded

def download(self, basefile=None): pass

@managedparsing
def parse(self,doc):

x = self.ocr_and_structure(doc)
return True

But since the result of all three parse() implementations are XHTML1.1+RDFa documents (possibly with varying
degrees of data fidelity), the implementation of generate() will be substantially the same. Furthermore, you probably
want to present a unified document collection to the end user, presenting documents derived from structured XML if
they’re available, documents derived from tagsoup HTML if an XML version wasn’t available, and finally documents
derived from your scanned documents if nothing else is available.

The class CompositeRepository makes this possible. You specify a number of subordinate docrepo classes
using the subrepos class property.

class CompositePatents(CompositeRepository):
alias = "pat"
Specify the classes in order of preference for parsed documents.
Only if XMLPatents does not have a specific patent will HTMLPatents
get the chance to provide it through it's parse method
subrepos = XMLPatents, HTMLPatents, ScannedPatents

def generate(self, basefile, otherrepos=[]):
Optional code to transform parsed XHTML1.1+RDFa documents
into browser-ready HTML5, regardless of wheter these are
derived from structured XML, tagsoup HTML or scanned
TIFFs. If your parse() method can make these parsed
documents sufficiently alike and generic, you might not need
to implement this method at all.
self.do_the_work(basefile)

The CompositeRepository docrepo then acts as a proxy for all of your specialized repositories:

$./ferenda-build.py patents.CompositePatents enable
calls download() for all subrepos
$./ferenda-build.py pat download
selects the best subrepo that has patent 5,723,765, calls parse()
for that, then copies the result to pat/parsed/ 5723765 (or links)
$./ferenda-build.py pat parse 5723765
uses the pat/parsed/5723765 data. From here on, we're just like any
other docrepo.
$./ferenda-build.py pat generate 5723765

Note that patents.XMLPatents and the other subrepos are never registered in ferenda.ini‘‘. They’re just called
behind-the-scenes by patents.CompositePatents.

92 Chapter 17. Advanced topics

Ferenda Documentation, Release 0.3.1.dev1

17.2 Patch files

It is not uncommon that source documents in a document repository contains formatting irregularities, sensitive infor-
mation that must be redacted, or just outright errors. In some cases, your parse implementation can detect and correct
these things, but in other cases, the irregularities are so uncommon or unique that this is not possible to do in a general
way.

As an alternative, you can patch the source document (or it’s intermediate representation) before the main part of your
parsing logic.

The method patch_if_needed() automates most of this work for you. It expects a basefile and the corresponding
source document as a string, looks in a patch directory for a corresponding patch file, and applies it if found.

By default, the patch directory is alongside the data directory. The patch file for document foo in repository bar should
be placed in patches/bar/foo.patch. An optional description of the patch (as a plaintext, UTF-8 encoded file)
can be placed in patches/bar/foo.desc.

patch_if_needed() returns a tuple (text, description). If there was no available patch, text is identical to the text
passed in and description is None. If there was a patch available and it applied cleanly, text is the patched text and
description is a description of the patch (or “(No patch description available)”). If there was a patch, but it didn’t apply
cleanly, a PatchError is raised.

Note: There is a mkpatch command in the Devel class which aims to automate the creation of patch files. It does
not work at the moment.

17.3 External annotations

Ferenda contains a general docrepo class that fetches data from a separate MediaWiki server and stores this as an-
notations/descriptions related to the documents in your main docrepos. This makes it possible to present a source
document and commentary on it (including annotations about individual sections) side-by-side.

See ferenda.sources.general.MediaWiki

17.4 Keyword hubs

Ferenda also contains a general docrepo class that lists all keywords used by documents in your main docrepos (by
default, it looks for all dcterms:subject properties used in any document) and generate documents for each of
them. These documents have no content of their own, but act as hub pages that list all documents that use a certain
keyword in one place.

When used together with the MediaWiki module above, this makes it possible to write editorial descriptions about
each keyword used, that is presented alongside the list of documents that use that keyword.

See ferenda.sources.general.Keyword

17.5 Custom common data

In many cases, you want to describe documents using references to other things that are not documents, but which
should be named using URIs rather than plain text literals. This includes things like companies, publishing entities,
print series and abstract things like the topic/keyword of a document. You can define a RDF graph containing more

17.2. Patch files 93

Ferenda Documentation, Release 0.3.1.dev1

information about each such thing that you know of beforehand, eg if we want to model that some RFCs are published
in the Internet Architecture Board (IAB) stream, we can define the following small graph:

<http://localhost:8000/ext/iab> a foaf:Organization;
foaf:name "Internet Architecture Board (IAB)";
skos:altLabel "IAB";
foaf:homepage <https://www.iab.org/> .

If this is placed in res/extra/[alias].ttl, eg res/extra/rfc.ttl, the graph is made available as
commondata, and is also provided as the third resource_graph argument to any selector/key functions of your
Facet objects.

17.6 Custom ontologies

Some parts of ferenda, notably The ReST API for querying, can make use of ontologies that your docrepo uses. This
is so far only used to provide human-readable descriptions of predicates used (as determined by rdfs:label or
rdfs:comment). Ferenda will try to find an ontology for any namespace you use in namespaces, and directly
supports many common vocabularies (bibo, dc, dcterms, foaf, prov, rdf, rdfs, schema and skos). If
you have defined your own custom ontology, place it (in Turtle format) as res/vocab/[alias].ttl, eg. res/
vocab/rfc.ttl to make Ferenda read it.

17.7 Parallel processing

It’s common to use ferenda with document collections with tens of thousands of documents. If a single document
takes a second to parse, it means the entire document collection will take three hours or more, which is not ideal for
quick turnaround. Ferenda, and in particular the ferenda-build.py tool, can run tasks in parallel to speed things
up.

17.7.1 Multiprocessing on a single machine

The simplest way of speeding up processing is to use the processes parameter, eg:

./ferenda-build.py rfc parse --all --processes=4

This will create 4 processes (started by a fifth control proccess), each processing individual documents as instructed
by the control process. As a rule of thumb, you should create as many processes as you have CPU cores.

17.7.2 Distributed processing

A more complex, but also more scalable way, is to set up a bunch of computers acting as processing clients, together
with a main (control) system. Each of these clients must have access to the same code and data directory as the main
system (ie they should all mount the same network file system). On each client, you then run (assuming that your main
system has the IP address 192.168.1.42, and that this particular client has 4 CPU cores):

./ferenda-build.py all buildclient --serverhost=192.168.1.42 --processes=4

On the main system, you first start a message queue with:

./ferenda-build.py all buildqueue

94 Chapter 17. Advanced topics

Ferenda Documentation, Release 0.3.1.dev1

Then you can run ferenda-build.py as normal but with the buildqueue parameter, eg:

./ferenda-build rfc parse --all --buildqueue

This will put each file to be processed in the message queue, where all clients will pick up these jobs and process them.

The clients and the message queue can be kept running indefinitely (although the clients will need to be restarted when
you change the code that they’re running).

If you’re not running ferenda on windows, you can skip the separate message queue process. Just start your clients
like above, then start ferenda-build.py on your main system with the buildserver parameter, eg:

./ferenda-build.py rfc parse --all --buildserver

This sets up a temporary in-subprocess message queue that your clients will connect to as soon as it’s up.

Note: Because of reasons, this in-subprocess queue does not work on Windows. On that platform you’ll need to run
the message queue separately, as described initially.

17.7. Parallel processing 95

Ferenda Documentation, Release 0.3.1.dev1

96 Chapter 17. Advanced topics

CHAPTER 18

API reference

18.1 Classes

18.1.1 The DocumentRepository class

class ferenda.DocumentRepository(config=None, **kwargs)
Base class for handling a repository of documents.

Handles downloading, parsing and generation of HTML version of documents. Start building your applica-
tion by subclassing this class, and then override methods in order to customize the downloading, parsing and
generation behaviour.

Parameters **kwargs – Any named argument overrides any similarly-named Configuration file
parameter.

Example:

>>> class MyRepo(DocumentRepository):
... alias="myrepo"
...
>>> d = MyRepo(datadir="/tmp/ferenda")
>>> d.store.downloaded_path("mybasefile").replace(os.sep,'/')
'/tmp/ferenda/myrepo/downloaded/mybasefile.html'

Note: This class has a ridiculous amount of properties and methods that you can override to control most of
Ferendas behaviour in all stages. For basic usage, you need only a fraction of them. Please don’t be intimi-
dated/horrified.

alias = 'base'
A short name for the class, used by the command line ferenda-build.py tool. Also determines where
to store downloaded, parsed and generated files. When you subclass DocumentRepository you must
override this.

97

Ferenda Documentation, Release 0.3.1.dev1

storage_policy = 'file'
Some repositories have documents in several formats, documents split amongst several files or embedded
resources. If storage_policy is set to dir, then each document gets its own directory (the default
filename being index +suffix), otherwise each doc gets stored as a file in a directory with other files.
Affects ferenda.DocumentStore.path() (and therefore all other *_path methods)

namespaces = ['rdf', 'rdfs', 'xsd', 'xsi', 'dcterms', 'skos', 'foaf', 'xhv', 'owl', 'prov', 'bibo']
The namespaces that are included in the XHTML and RDF files generated by parse(). This can be a
list of strings, in which case the strings are assumed to be well-known prefixes to established namespaces,
or a list of (prefix, namespace) tuples. All well-known prefixes are available in ferenda.util.ns.

If you specify a namespace for a well-known ontology/vocabulary, that onlology will be available as a
Graph from the ontologies property.

collate_locale = None
The locale to be used for sorting (collating). This affects TOCs, see Defining facets for grouping and
sorting.

loadpath = None
If defined (by default it’s None), this should be a list of directories that takes precedence over the loadpath
given by the current config.

lang = 'en'
The language (expressed as a two-letter ISO 639-1 code) which the source documents are assumed to be
written in (unless otherwise specified), and the language which output document should use.

start_url = 'http://example.org/'
The main entry page for the remote web store of documents. May be a list of documents, a search form
or whatever. If it’s something more complicated than a simple list of documents, you need to override
download() in order to tell which documents are to be downloaded.

document_url_template = 'http://example.org/docs/%(basefile)s.html'
A string template for creating URLs for individual documents on the remote web server. Directly used by
remote_url() and indirectly by download_single().

document_url_regex = 'http://example.org/docs/(?P<basefile>\\w+).html'
A regex that matches URLs for individual documents – the reverse of what document_url_template
is used for. Used by download() to find suitable links if basefile_regex doesn’t match. Must
define the named group basefile using the (?P<basefile>...) syntax

basefile_regex = '^ID: ?(?P<basefile>[\\w\\d\\:\\/]+)$'
A regex for matching document names in link text, as used by download(). Must define a named group
basefile, just like document_url_template.

downloaded_suffix = '.html'
File suffix for the main document format. Determines the suffix of downloaded files.

download_archive = True
If True (the default), any attempt by download_single to download a basefile that already exists will cause
the old version to be archived. See Archiving.

download_iterlinks = True
If True (the default), download_get_basefiles() will be called with an iterator that returns (ele-
ment, attribute, link, pos) tuples (like lxml.etree.iterlinks() does). Othervise, it will be called
with the downloaded index page as a string.

download_accept_404 = False
If True (default: False), any 404 HTTP error encountered during download will NOT raise and error.
Instead, the download process will just move on to the next identified basefile.

download_accept_406 = False

98 Chapter 18. API reference

https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph

Ferenda Documentation, Release 0.3.1.dev1

download_accept_400 = False

download_reverseorder = False
It True (default: False), download_get_basefiles will process recieved basefiles in reverse order.

source_encoding = 'utf-8'
The character set that the source documents use (if applicable).

rdf_type = rdflib.term.URIRef('http://xmlns.com/foaf/0.1/Document')
The RDF type of the documents you are handling (expressed as a rdflib.term.URIRef object).

Note: If your repo produces documents of several different types, you can define this as a list (or other
iterable) of URIRef objects. faceted_data() will only find documents that are any of the types.

required_predicates = [rdflib.term.URIRef('http://www.w3.org/1999/02/22-rdf-syntax-ns#type')]
A list of RDF predicates that should be present in the outdata. If any of these are missing from the result
of parse(), a warning is logged. You can add to this list as a form of simple validation of your parsed
data.

max_resources = 1000
The maximum number of sub-resources (as defined by having a specific URI) that documents in this repo
can have. This is checked in a validation step at the end of parse. If set to None, no validation of the
number of resources is done.

parse_content_selector = 'body'
CSS selector used to select the main part of the document content by the default parse() implementation.

parse_filter_selectors = ['script']
CSS selectors used to filter/remove certain parts of the document content by the default parse() imple-
mentation.

xslt_template = 'xsl/generic.xsl'
A template used by generate() to transform the XML file into browser-ready HTML. If your document
type is complex, you might want to override this (and write your own XSLT transform). You should include
base.xslt in that template, though.

sparql_annotations = 'sparql/annotations.rq'
A template SPARQL CONSTRUCT query for document annotations.

sparql_expect_results = True
If True (the default) and the sparql_annotations_query doesn’t return any results, issue a warn-
ing.

documentstore_class
alias of ferenda.documentstore.DocumentStore

requesthandler_class
alias of ferenda.requesthandler.RequestHandler

ontologies
Provides a Graph loaded with the ontologies/vocabularies that this docrepo uses (as determined by the
namespaces` property).

If you’re using your own vocabularies, you can place them (in Turtle format) as vocab/[prefix].ttl
somewhere in your resource loadpath to have them loaded into the graph.

Note: Some system-like vocabularies (rdf, rdfs and owl) are never loaded into the graph.

18.1. Classes 99

https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph

Ferenda Documentation, Release 0.3.1.dev1

commondata
Provides a Graph containing any extra data that is common to documents in this docrepo – this can
be information about different entities that publishes the documents, the printed series in which they’re
published, and so on. The data is taken from extra/[repoalias].ttl.

config
The LayeredConfig object that contains the current configuration for this docrepo instance. You can
read or write individual properties of this object, or replace it with a new LayeredConfig object en-
tirely.

lookup_resource(label, predicate=rdflib.term.URIRef(’http://xmlns.com/foaf/0.1/name’), cut-
off=0.8, warn=True)

Given a textual identifier (ie. the name for something), lookup the canonical uri for that thing in the
RDF graph containing extra data (i.e. the graph that commondata provides). The graph should have a
foaf:name‘‘ statement about the url with the sought label as the object.

Since data is imperfect, the textual label may be spelled or expressed different in different contexts. This
method therefore performs fuzzy matching (using difflib.get_close_matches()) using the cut-
off parameter determines exactly how fuzzy this matching is.

If no resource matches the given label, a KeyError is raised.

Parameters

• label (str) – The textual label to lookup

• predicate (rdflib.term.URIRef) – The RDF predicate to use when looking for
the label

• cutoff (float) – How fuzzy the matching may be (1 = must match exactly, 0 = any-
thing goes)

• warn (bool) – Whether to log a warning when an inexact match is performed

Returns The matching resource

Return type rdflib.term.URIRef

classmethod get_default_options()
Returns the class’ configuration default configuration properties. These can be overridden by a configution
file, or by named arguments to __init__(). See Configuration for a list of standard configuration
properties (your subclass is free to define and use additional configuration properties).

Returns default configuration properties

Return type dict

classmethod setup(action, config, *args, **kwargs)
Runs before any of the *_all methods starts executing. It just calls the appropriate setup method, ie if
action is parse, then this method calls parse_all_setup (if defined) with the config object as single
parameter.

classmethod teardown(action, config, *args, **kwargs)
Runs after any of the *_allmethods has finished executing. It just calls the appropriate teardown method,
ie if action is parse, then this method calls parse_all_teardown (if defined) with the config object
as single parameter.

get_archive_version(basefile)
Get a version identifier for the current version of the document identified by basefile.

The default implementation simply increments most recent archived version identifier, starting at “1”. If
versions in your docrepo are normally identified in some other way (such as SCM revision numbers, dates
or similar) you should override this method to return those identifiers.

100 Chapter 18. API reference

https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph
https://layeredconfig.readthedocs.io/en/latest/api.html#layeredconfig.LayeredConfig
https://layeredconfig.readthedocs.io/en/latest/api.html#layeredconfig.LayeredConfig
https://docs.python.org/3/library/difflib.html#difflib.get_close_matches
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef
https://docs.python.org/3/library/stdtypes.html#dict

Ferenda Documentation, Release 0.3.1.dev1

Parameters basefile (str) – The basefile of the document to archive

Returns The version identifier for the current version of the document.

Return type str

qualified_class_name()
The qualified class name of this class

Returns class name (e.g. ferenda.DocumentRepository)

Return type str

canonical_uri(basefile)
The canonical URI for the document identified by basefile.

Returns The canonical URI

Return type str

dataset_uri(param=None, value=None, feed=False)
Returns the URI that identifies the dataset that this docrepository provides. The default implementation is
based on the url config parameter and the alias attribute of the class, c.f. http://localhost:8000/
dataset/base.

Parameters

• param – An optional parameter name represeting a way of createing a subset of the dataset
(eg. all document whose title starts with a particular letter)

• value – A value for param (eg. “a”)

>>> d = DocumentRepository()
>>> d.alias
'base'
>>> d.config.url = "http://example.org/"
>>> d.dataset_uri()
'http://example.org/dataset/base'
>>> d.dataset_uri("title","a")
'http://example.org/dataset/base?title=a'
>>> d.dataset_uri(feed=True)
'http://example.org/dataset/base/feed'
>>> d.dataset_uri("title", "a", feed=True)
'http://example.org/dataset/base/feed?title=a'
>>> d.dataset_uri("title", "a", feed=".atom")
'http://example.org/dataset/base/feed.atom?title=a'

basefile_from_uri(uri)
The reverse of canonical_uri(). Returns None if the uri doesn’t map to a basefile in this repo.

>>> d = DocumentRepository()
>>> d.alias
'base'
>>> d.config.url = "http://example.org/"
>>> d.basefile_from_uri("http://example.org/res/base/123/a")
'123/a'
>>> d.basefile_from_uri("http://example.org/res/base/123/a#S1")
'123/a'
>>> d.basefile_from_uri("http://example.org/res/other/123/a") # None

get_required_predicates(doc)

18.1. Classes 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

download(basefile=None, reporter=None)
Downloads all documents from a remote web service.

The default generic implementation assumes that all documents are linked from a single page (which has
the url of start_url), that they all have URLs matching the document_url_regex or that the link
text is always equal to basefile (as determined by basefile_regex). If these assumptions don’t hold,
you need to override this method.

If you do override it, your download method should read and set the lastdownload parameter to either
the datetime of the last download or any other module-specific string (id number or similar).

You should also read the refresh parameter. If it is True (the default), then you should call
download_single() for every basefile you encounter, even though they may already exist in some
form on disk. download_single() will normally be using conditional GET to see if there is a newer
version available.

See Writing your own download implementation for more details.

Returns True if any document was downloaded, False otherwise.

Return type bool

download_get_first_page()
TBD

download_get_basefiles(source)
Given source (a iterator that provides (element, attribute, link, pos) tuples, like lxml.etree.
iterlinks()), generate tuples (basefile, link) for all document links found in source.

download_single(basefile, url=None, orig_url=None)
Downloads the document from the web (unless explicitly specified, the URL to download is determined by
document_url_template combined with basefile, the location on disk is determined by the function
downloaded_path()).

If the document exists on disk, but the version on the web is unchanged (determined using a conditional
GET), the file on disk is left unchanged (i.e. the timestamp is not modified).

Parameters

• basefile (string) – The basefile of the document to download

• url (str) – The URL to download (optional)

• url – The URL to store in the documententry file (might be a landing page containing the
actual document URL)

Returns True if the document was downloaded and stored on disk, False if the file on disk
was not updated.

download_if_needed(url, basefile, archive=True, filename=None, sleep=1, extraheaders=None)
Downloads a remote resource to a local file. If a different version is already in place, archive that old
version.

Parameters

• url (str) – The url to download

• basefile (str) – The basefile of the document to download

• archive (bool) – Whether to archive existing older versions of the document, or just
delete the previously downloaded file.

• filename (str) – The filename to download to. If not provided, the filename is derived
from the supplied basefile

102 Chapter 18. API reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

Returns True if the local file was updated (and archived), False otherwise.

Return type bool

download_name_file(tmpfile, basefile, assumedfile)
TBD

download_is_different(existing, new)
Returns True if the new file is semantically different from the existing file.

remote_url(basefile)
Get the URL of the source document at it’s remote location, unless the source document is fetched
by other means or if it cannot be computed from basefile only. The default implementation uses
document_url_template to calculate the url.

Example:

>>> d = DocumentRepository()
>>> d.remote_url("123/a")
'http://example.org/docs/123/a.html'
>>> d.document_url_template = "http://mysite.org/archive/%(basefile)s/"
>>> d.remote_url("123/a")
'http://mysite.org/archive/123/a/'

Parameters basefile (str) – The basefile of the source document

Returns The remote url where the document can be fetched, or None.

Return type str

generic_url(basefile, maindir, suffix)
Analogous to ferenda.DocumentStore.path(), calculate the full local url for the given basefile
and stage of processing.

Parameters

• basefile (str) – The basefile for which to calculate the local url

• maindir (str) – The processing stage directory (normally downloaded, parsed, or
generated)

• suffix (str) – The file extension including period (i.e. .txt, not txt)

Returns The local url

Return type str

downloaded_url(basefile)
Get the full local url for the downloaded file for the given basefile.

Parameters basefile (str) – The basefile for which to calculate the local url

Returns The local url

Return type str

>>> d = DocumentRepository()
>>> d.downloaded_url("123/a")
'http://localhost:8000/base/downloaded/123/a.html'

classmethod parse_all_setup(config, *args, **kwargs)
Runs any action needed prior to parsing all documents in a docrepo. The default implementation does
nothing.

18.1. Classes 103

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

Note: This is a classmethod for now (and that’s why a config object is passsed as an argument), but might
change to a instance method.

classmethod parse_all_teardown(config, *args, **kwargs)
Runs any cleanup action needed after parsing all documents in a docrepo. The default implementation
does nothing.

Note: Like parse_all_setup() this might change to a instance method.

parse(doc, needed=True)
Parse downloaded documents into structured XML and RDF.

It will also save the same RDF statements in a separate RDF/XML file.

You will need to provide your own parsing logic, but often it’s easier to just override parse_{metadata,
document}_from_soup (assuming your indata is in a HTML format parseable by BeautifulSoup) and let
the base class read and write the files.

If your data is not in a HTML format, or BeautifulSoup is not an appropriate parser to use, override this
method.

Parameters doc (ferenda.Document) – The document object to fill in.

parse_entry_update(doc)
Update the DocumentEntry json file for this document.

parse_entry_id(doc)
Construct a id (URI) for the document, to be stored in it’s DocumentEntry json file.

Normally, this is identical to the main document URI as specified in doc.uri.

parse_entry_title(doc)
Construct a useful title for the document, like it’s dcterms:title, to be stored in it’s DocumentEntry json
file.

parse_entry_summary(doc)
Construct a useful summary for the document, like it’s dcterms:abstract, to be stored in it’s DocumentEntry
json file.

soup_from_basefile(basefile, encoding=’utf-8’, parser=’lxml’)
Load the downloaded document for basefile into a BeautifulSoup object

Parameters

• basefile (str) – The basefile for the downloaded document to parse

• encoding (str) – The encoding of the downloaded document

Returns The parsed document as a BeautifulSoup object

Note: Helper function. You probably don’t need to override it.

parse_metadata_from_soup(soup, doc)
Given a BeautifulSoup document, retrieve all document-level metadata from it and put it into the given
doc object’s meta property.

104 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

Note: The default implementation sets rdf:type, dcterms:title, dcterms:identifier and
prov:wasGeneratedBy properties in doc.meta, as well as setting the language of the document in
doc.lang.

Parameters

• soup – A parsed document, as BeautifulSoup object

• doc (ferenda.Document) – Our document

Returns None

parse_document_from_soup(soup, doc)
Given a BeautifulSoup document, convert it into the provided doc object’s body property as suitable
ferenda.elements objects.

Note: The default implementation respects parse_content_selector and
parse_filter_selectors.

Parameters

• soup – A parsed document as a BeautifulSoup object

• doc (ferenda.Document) – Our document

Returns None

patch_if_needed(basefile, text)
Given basefile and the entire text of the downloaded or intermediate document, find if there exists a patch
file under self.config.patchdir, and if so, applies it. Returns (patchedtext, patchdescription) if
so, (text,None) otherwise.

Parameters

• basefile (str) – The basefile of the text

• text (bytes) – The text to be patched

make_document(basefile=None)
Create a Document objects with basic initialized fields.

Note: Helper method used by the makedocument() decorator.

Parameters basefile (str) – The basefile for the document

Return type ferenda.Document

make_graph()
Initialize a rdflib Graph object with proper namespace prefix bindings (as determined by namespaces)

Return type rdflib.Graph

create_external_resources(doc)
Optionally create external files that go together with the parsed file (stylesheets, images, etc).

The default implementation does nothing.

18.1. Classes 105

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

Parameters doc (ferenda.Document) – The document

render_xhtml(doc, outfile=None)
Renders the parsed object structure as a XHTML file with RDFa attributes (also returns the same XHTML
as a string).

Parameters

• doc (ferenda.Document) – The document to render

• outfile (str) – The file name for the XHTML document

Returns The XHTML document

Return type str

render_xhtml_tree(doc)
Renders the parsed object structure as a lxml.etree._Element object.

Parameters doc (ferenda.Document) – The document to render

Returns The XHTML document as a lxml structure

Return type lxml.etree._Element

render_xhtml_validate(xhtmldoc)
TBD

parsed_url(basefile)
Get the full local url for the parsed file for the given basefile.

Parameters basefile (str) – The basefile for which to calculate the local url

Returns The local url

Return type str

distilled_url(basefile)
Get the full local url for the distilled RDF/XML file for the given basefile.

Parameters basefile (str) – The basefile for which to calculate the local url

Returns The local url

Return type str

classmethod relate_all_setup(config, *args, **kwargs)
Runs any cleanup action needed prior to relating all documents in a docrepo. The default implementation
clears the corresponsing context (see dataset_uri()) in the triple store.

Note: Like parse_all_setup() this might change to a instance method.

Returns False if no relation needs to be done (as determined by the timestamp on the dump nt file)

classmethod relate_all_teardown(config, *args, **kwargs)
Runs any cleanup action needed after relating all documents in a docrepo. The default implementation
dumps all RDF data loaded into the triplestore into one giant N-Triples file.

Note: Like parse_all_setup() this might change to a instance method.

relate(basefile, otherrepos=[], needed=RelateNeeded(fulltext=True, dependencies=True,
triples=True))

Runs various indexing operations for the document.

106 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

This includes inserting RDF statements into a triple store, adding this document to the dependency list to
all documents that it refers to, and putting the text of the document into a fulltext index.

relate_triples(basefile, removesubjects=False)
Insert the (previously distilled) RDF statements into the triple store.

Parameters

• basefile (str) – The basefile for the document containing the RDF statements.

• removesubjects (bool) – Whether to remove all identified subjects from the triple-
store beforehand (to clear the previous version of this basefile’s metadata). FIXME: not
yet used

Returns None

relate_dependencies(basefile, repos=[])
For each document that the basefile document refers to, attempt to find this document in the current or any
other docrepo, and add the parsed document path to that documents dependency file.

add_dependency(basefile, dependencyfile)
Add the dependencyfile to basefile s dependency file. Returns True if anything new was added, False
otherwise

relate_fulltext(basefile, repos=None)
Index the text of the document into fulltext index. Also indexes all metadata that facets() indicate should
be indexed.

Parameters basefile (str) – The basefile for the document to be indexed.

Returns None

facets()
Provides a list of Facet objects that specify how documents in your docrepo should be grouped.

Override this if you want to specify your own way of grouping data in your docrepo.

faceted_data()
Provides a list of dicts, each containing a row of information about a single document in the repository.
The exact fields provided are controlled by the list of Facet objects returned by facet().

Note: The same document can occur multiple times if any of it’s facets have multiple_values set,
once for each different values that that facet has.

facet_query(context)
Constructs a SPARQL SELECT query that fetches all information needed to create faceted data.

Parameters context (str) – The context (named graph) to which to limit the query.

Returns The SPARQL query

Return type str

Example:

>>> d = DocumentRepository()
>>> expected = """PREFIX dcterms: <http://purl.org/dc/terms/>
... PREFIX foaf: <http://xmlns.com/foaf/0.1/>
... PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
...
... SELECT DISTINCT ?uri ?rdf_type ?dcterms_title ?dcterms_publisher ?dcterms_
→˓identifier ?dcterms_issued

(continues on next page)

18.1. Classes 107

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

... FROM <http://example.org/ctx/base>

... WHERE {

... ?uri rdf:type foaf:Document .

... OPTIONAL { ?uri rdf:type ?rdf_type . }

... OPTIONAL { ?uri dcterms:title ?dcterms_title . }

... OPTIONAL { ?uri dcterms:publisher ?dcterms_publisher . }

... OPTIONAL { ?uri dcterms:identifier ?dcterms_identifier . }

... OPTIONAL { ?uri dcterms:issued ?dcterms_issued . }

...

... }"""
>>> d.facet_query("http://example.org/ctx/base") == expected
True

facet_select(query)
Select all data from the triple store needed to create faceted data.

Parameters context (str) – The context (named graph) to restrict the query to. If None,
search entire triplestore.

Returns The results of the query, as python objects

Return type set of dicts

classmethod generate_all_setup(config, *args, **kwargs)
Runs any action needed prior to generating all documents in a docrepo. The default implementation does
nothing.

Note: Like parse_all_setup() this might change to a instance method.

classmethod generate_all_teardown(config, *args, **kwargs)
Runs any cleanup action needed after generating all documents in a docrepo. The default implementation
does nothing.

Note: Like parse_all_setup() this might change to a instance method.

generate(basefile, otherrepos=[], needed=True)
Generate a browser-ready HTML file from structured XML and RDF.

Uses the XML and RDF files constructed by ferenda.DocumentRepository.parse().

The generation is done by XSLT, and normally you won’t need to override this, but you might want to
provide your own xslt file and set ferenda.DocumentRepository.xslt_template to the name
of that file.

If you want to generate your browser-ready HTML by any other means than XSLT, you should override
this method.

Parameters basefile (str) – The basefile for which to generate HTML

Returns None

get_url_transform_func(repos=None, basedir=None, develurl=None, remove_missing=False)
Returns a function that, when called with a URI, transforms that URI to another suitable reference. This
can be used to eg. map between canonical URIs and local URIs. The function is run on all URIs in a post-
processing step after generate() runs. The default implementatation maps URIs to local file paths, and
is only run if config.staticsite``is ``True.

108 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

prep_annotation_file(basefile)
Helper function used by generate() – prepares a RDF/XML file containing statements that in some
way annotates the information found in the document that generate handles, like URI/title of other docu-
ments that refers to this one.

Parameters basefile (str) – The basefile for which to collect annotating statements.

Returns The full path to the prepared RDF/XML file

Return type str

construct_annotations(uri)
Construct a RDF graph containing metadata by running the query provided by
construct_sparql_query()

construct_sparql_query(uri)
Construct a SPARQL query that will select metadata relating to uri in some way, using the query template
specified by sparql_annotations

graph_to_annotation_file(graph)
Converts a RDFLib graph into a XML file with the same statements, ordered using the Grit format (https:
//code.google.com/p/oort/wiki/Grit) for easier XSLT inclusion.

Parameters graph (rdflib.graph.Graph) – The graph to convert

Returns A serialized XML document with the RDF statements

Return type str

annotation_file_to_graph(annotation_file)
Converts a annotation file (using the Grit format) back into an RDFLib graph.

Parameters graph (str) – The filename of a serialized XML document with RDF statements

Returns The RDF statements as a regular graph

Return type rdflib.Graph

generated_url(basefile)
Get the full local url for the generated file for the given basefile.

Parameters basefile (str) – The basefile for which to calculate the local url

Returns The local url

Return type str

transformlinks(basefile, otherrepos=[])
Transform links in generated HTML files.

If the develurl or staticsite settings are used, this function makes sure links are transformed to
appropriate local links.

toc(otherrepos=[])
Creates a set of pages that together acts as a table of contents for all documents in the repository. For
smaller repositories a single page might be enough, but for repositoriees with a few hundred documents or
more, there will usually be one page for all documents starting with A, starting with B, and so on. There
might be different ways of browseing/drilling down, i.e. both by title, publication year, keyword and so
on.

The default implementation calls faceted_data() to get all data from the triple store, facets()
to find out the facets for ordering, toc_pagesets() to calculate the total set of TOC html files,
toc_select_for_pages() to create a list of documents for each TOC html file, and finally

18.1. Classes 109

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://code.google.com/p/oort/wiki/Grit
https://code.google.com/p/oort/wiki/Grit
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

toc_generate_pages() to create the HTML files. The default implemention assumes that docu-
ments have a title (in the form of a dcterms:title property) and a publication date (in the form of a
dcterms:issued property).

You can override any of these methods to customize any part of the toc generation process. Often overrid-
ing facets() to specify other document properties will be sufficient.

toc_pagesets(data, facets)
Calculate the set of needed TOC pages based on the result rows

Parameters

• data – list of dicts, each dict containing metadata about a single document

• facets – list of Facet objects

Returns A set of Pageset objects

Return type list

Example:

>>> d = DocumentRepository()
>>> from rdflib.namespace import DCTERMS
>>> rows = [{'uri':'http://ex.org/1','dcterms_title':'Abc','dcterms_issued':
→˓'2009-04-02'},
... {'uri':'http://ex.org/2','dcterms_title':'Abcd','dcterms_issued':
→˓'2010-06-30'},
... {'uri':'http://ex.org/3','dcterms_title':'Dfg','dcterms_issued':
→˓'2010-08-01'}]
>>> from rdflib.namespace import DCTERMS
>>> facets = [Facet(DCTERMS.title), Facet(DCTERMS.issued)]
>>> pagesets=d.toc_pagesets(rows,facets)
>>> pagesets[0].label
'Sorted by title'
>>> pagesets[0].pages[0]
<TocPage binding=dcterms_title linktext=a title=Documents starting with "a"
→˓value=a>
>>> pagesets[0].pages[0].linktext
'a'
>>> pagesets[0].pages[0].title
'Documents starting with "a"'
>>> pagesets[0].pages[0].binding
'dcterms_title'
>>> pagesets[0].pages[0].value
'a'
>>> pagesets[1].label
'Sorted by publication year'
>>> pagesets[1].pages[0]
<TocPage binding=dcterms_issued linktext=2009 title=Documents published in
→˓2009 value=2009>

toc_select_for_pages(data, pagesets, facets)
Go through all data rows (each row representing a document) and, for each toc page, select those docu-
ments that are to appear in a particular page.

Example:

>>> d = DocumentRepository()
>>> rows = [{'uri':'http://ex.org/1','dcterms_title':'Abc','dcterms_issued':
→˓'2009-04-02'},

(continues on next page)

110 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#list

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

... {'uri':'http://ex.org/2','dcterms_title':'Abcd','dcterms_issued':
→˓'2010-06-30'},
... {'uri':'http://ex.org/3','dcterms_title':'Dfg','dcterms_issued':
→˓'2010-08-01'}]
>>> from rdflib.namespace import DCTERMS
>>> facets = [Facet(DCTERMS.title), Facet(DCTERMS.issued)]
>>> pagesets=d.toc_pagesets(rows,facets)
>>> expected={('dcterms_title','a'):[[Link('Abc',uri='http://ex.org/1')],
... [Link('Abcd',uri='http://ex.org/2')]],
... ('dcterms_title','d'):[[Link('Dfg',uri='http://ex.org/3')]],
... ('dcterms_issued','2009'):[[Link('Abc',uri='http://ex.org/1')]],
... ('dcterms_issued','2010'):[[Link('Abcd',uri='http://ex.org/2')],
... [Link('Dfg',uri='http://ex.org/3')]]}
>>> d.toc_select_for_pages(rows, pagesets, facets) == expected
True

Parameters

• data – List of dicts as returned by toc_select()

• pagesets – Result from toc_pagesets()

• facets – Result from facets()

Returns mapping between toc basefile and documentlist for that basefile

Return type dict

toc_item(binding, row)
Returns a formatted version of row, using Element objects

toc_generate_pages(pagecontent, pagesets, otherrepos=[])

Creates a set of TOC pages by calling toc_generate_page().

Parameters

• pagecontent – Result from toc_select_for_pages()

• pagesets – Result from toc_pagesets()

• otherrepos – A list of document repository instances

toc_generate_first_page(pagecontent, pagesets, otherrepos=[])
Generate the main page of TOC pages.

toc_generate_page(binding, value, documentlist, pagesets, effective_basefile=None, title=None,
otherrepos=[])

Generate a single TOC page.

Parameters

• binding – The binding used (eg. ‘title’ or ‘issued’)

• value – The value for the used binding (eg. ‘a’ or ‘2013’

• documentlist – Result from toc_select_for_pages()

• pagesets – Result from toc_pagesets()

• effective_basefile – Place the resulting page somewhere else than toc/

binding/*value*.html

18.1. Classes 111

https://docs.python.org/3/library/stdtypes.html#dict

Ferenda Documentation, Release 0.3.1.dev1

• otherrepos – A list of document repository instances

toc_generate_page_body(documentlist, nav)

news_sortkey = 'updated'

news(otherrepos=[])
Create a set of Atom feeds and corresponding HTML pages for new/updated documents in different cate-
gories in the repository.

news_facet_entries(keyfunc=None, reverse=True)
Returns a set of entries, decorated with information from faceted_data(), used for feed generation.

Parameters

• keyfunc (callable) – Function that given a dict, returns an element from that dict,
used for sorting entries.

• reverse – The direction of the sorting

Returns entries, each represented as a dict

Return type list

news_feedsets_main_label = 'All documents'

news_feedsets(data, facets)
Calculate the set of needed feedsets based on facets and instance values in the data

Parameters

• data – list of dicts, each dict containing metadata about a single document

• facets – list of Facet objects

Returns A list of Feedset objects

news_entrysort_key()
Return a function that can act as a keyfunc in a sorted() call to sort your entries in whatever way suitable.
The keyfunc takes three values (row, binding, resource_graph).

Only really used for the main feedset? The other feedsets, based on facets, use that facets keyfunc.

news_select_for_feeds(data, feedsets, facets)
Go through all data rows (each row representing a document) and, for each newsfeed, select those docu-
ment entries that are to appear in that feed

Parameters

• data – List of dicts as returned by news_facet_entries()

• feedsets – List of feedset objects, the result from news_feedsets()

• facets – Result from facets()

Returns mapping between a (binding, value) tuple and entries for that tuple!

news_item(binding, entry)
Returns a modified version of the news entry for use in a specific feed.

You can override this if you eg. want to customize title or summary of each entry in a particular feed. The
default implementation does not change the entry in any way.

Parameters

• binding (str) – identifier for the feed being constructed, derived from a facet object.

• entry (ferenda.DocumentEntry) – The entry object to modify

112 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

Returns The modified entry

Return type ferenda.DocumentEntry

news_entries()
Return a generator of all available (and published) DocumentEntry objects.

news_generate_feeds(feedsets, generate_html=True)
Creates a set of Atom feeds (and optionally HTML equivalents) by calling news_write_atom() for
each feed in feedsets.

Parameters

• feedsets (list) – the result of news_feedsets()

• generate_html (bool) – Whether to generate HTML equivalents of the atom feeds

news_write_atom(entries, title, slug, archivesize=100)
Given a list of Atom entry-like objects, including links to RDF and PDF files (if applicable), create a
rinfo-compatible Atom feed, optionally splitting into archives.

Parameters

• entries (list) – DocumentEntry objects

• title (str) – feed title

• slug (str) – used for constructing the path where the Atom files are stored and the URL
where it’s published.

• archivesize (int) – The amount of entries in each archive file. The main file might
contain up to 2 x this amount.

frontpage_content(primary=False)
If the module wants to provide any particular content on the frontpage, it can do so by returning a XHTML
fragment (in text form) here.

Parameters primary (bool) – Whether the caller wants the module to take primary respon-
sibility for the frontpage content. If False, the caller only expects a smaller amount of
content (like a smaller presentation of the repository and the document it contains).

Returns the XHTML fragment

Return type str

If primary is true, . If primary is false, the caller only expects a smaller amount of content (like a smaller
presentation of the repository and the document it contains).

get_status()
Returns basic data about the state about this repository, used by status(). Returns a dict of dicts, one
per state (‘download’, ‘parse’ and ‘generated’), each containing lists under the ‘exists’ and ‘todo’ keys.

Returns Status information

Return type dict

tabs()
Get the navigation menu segment(s) provided by this docrepo.

Returns a list of tuples, where each tuple will be rendered as a tab in the main UI. First element of the tuple
is the link text, and the second is the link destination. Normally, a module will only return a single tab.

Returns (link text, link destination) tuples

Return type list

18.1. Classes 113

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Ferenda Documentation, Release 0.3.1.dev1

Example:

>>> d = DocumentRepository()
>>> d.tabs()
[('base', 'http://localhost:8000/dataset/base')]

footer()
Get a list of resources provided by this repo for publication in the site footer.

Works like tabs(), but normally returns an empty list. The repo ferenda.sources.general.
Static is an exception.

Returns (link text, link destination) tuples

Return type list

18.1.2 The Document class

class ferenda.Document(meta=None, body=None, uri=None, lang=None, basefile=None)
A document represents the content of a document together with a RDF graph containing metadata about the
document. Don’t create instances of Document directly. Create them through make_document() in order
to properly initialize the meta property.

Parameters

• meta – A RDF graph containing metadata about the document

• body – A list of ferenda.elements based objects representing the content of the doc-
ument

• uri – The canonical URI for this document

• lang – The main language of the document as a IETF language tag, i.e. “sv” or “en-GB”

• basefile – The basefile of the document

18.1.3 The DocumentEntry class

class ferenda.DocumentEntry(path=None)
This class has two primary uses – it is used to represent and store aspects of the downloading of each document
(when it was initially downloaded, optionally updated, and last checked, as well as the URL from which it was
downloaded). It’s also used by the news_* methods to encapsulate various aspects of a document entry in an
atom feed. Some properties and methods are used by both of these use cases, but not all.

Parameters path (str) – If this file path is an existing JSON file, the object is initialized from
that file.

orig_created = None
The first time we fetched the document from it’s original location.

id = None
The canonical uri for the document.

basefile = None
The basefile for the document.

orig_updated = None
The last time the content at the original location of the document was changed.

114 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

orig_checked = None
The last time we accessed the original location of this document, regardless of wheter this led to an update.

orig_url = None
The main url from where we fetched this document.

indexed_ts = None
The last time the metadata was indexed in a triplestore

indexed_dep = None
The last time the dependent files of the document was indexed

indexed_ft = None
The last time the document was indexed in a fulltext index

published = None
The date our parsed/processed version of the document was published.

updated = None
The last time our parsed/processed version changed in any way (due to the original content being updated,
or due to changes in our parsing functionality.

title = None
A title/label for the document, as used in an Atom feed.

summary = None
A summary of the document, as used in an Atom feed.

url = None
The URL to the browser-ready version of the page, equivalent to what generated_url() returns.

content = None
A dict that represents metadata about the document file.

link = None
A dict that represents metadata about the document RDF metadata (such as it’s URI, length, MIME-type
and MD5 hash).

status = None
A nested dict containing various info about the latest attempt to download/parse/relate/generate the docu-
ment.

save(path=None)
Saves the state of the documententry to a JSON file at path. If path is not provided, uses the path that the
object was initialized with.

set_content(filename, url, mimetype=None, inline=False)
Sets the content property and calculates md5 hash for the file

Parameters

• filename – The full path to the document file

• url – The full external URL that will be used to get the same document file

• mimetype – The MIME-type used in the atom feed. If not provided, guess from file
extension.

• inline – whether to inline the document content in the file or refer to url

set_link(filename, url, mimetype=None)
Sets the link property and calculate md5 hash for the RDF metadata.

Parameters

18.1. Classes 115

Ferenda Documentation, Release 0.3.1.dev1

• filename – The full path to the RDF file for a document

• url – The full external URL that will be used to get the same RDF file

• mimetype – The MIME-type used in the atom feed. If not provided, guess from file
extension.

calculate_md5(filename)
Given a filename, return the md5 value for the file’s content.

guess_type(filename)
Given a filename, return a MIME-type based on the file extension.

static updateentry(f, section, entrypath, entrypath_arg, *args, **kwargs)
runs the provided function with the provided arguments, captures any logged events emitted, catches any
errors, and records the result in the entry file under the provided section. Entrypath should be a function
that takes a basefile string and returns the full path to the entry file for that basefile.

18.1.4 The DocumentStore class

class ferenda.DocumentStore(datadir, storage_policy=’file’, compression=None)
Unifies handling of reading and writing of various data files during the download, parse and generate
stages.

Parameters

• datadir (str) – The root directory (including docrepo path segment) where files are
stored.

• storage_policy (str) – Some repositories have documents in several formats, docu-
ments split amongst several files or embedded resources. If storage_policy is set to
dir, then each document gets its own directory (the default filename being index +suffix),
otherwise each doc gets stored as a file in a directory with other files. Affects path() (and
therefore all other *_path methods)

• compression (str) – Which compression method to use when storing files. Can
be None (no compression), "gz", "bz2", "xz" or True (select best compres-
sion method, currently xz). NB: This only affects intermediate_path() and
open_intermediate().

downloaded_suffixes = ['.html']

intermediate_suffixes = ['.xml']

invalid_suffixes = ['.invalid']

compression = None

resourcepath(resourcename)

open_resource(resourcename, mode=’r’)

path(basefile, maindir, suffix, version=None, attachment=None, storage_policy=None)
Calculate a full filesystem path for the given parameters.

Parameters

• basefile (str) – The basefile of the resource we’re calculating a filename for

• maindir (str) – The stage of processing, e.g. downloaded or parsed

• suffix – Appropriate file suffix, e.g. .txt or .pdf

• version (str) – Optional. The archived version id

116 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

• attachment (str) – Optional. Any associated file needed by the main file.

• storage_policy – Optional. Used to override storage_policy if needed

Note: This is a generic method with many parameters. In order to keep your code tidy and and
loosely coupled to the actual storage policy, you should use methods like downloaded_path() or
parsed_path() when possible.

Example:

>>> d = DocumentStore(datadir="/tmp/base")
>>> realsep = os.sep
>>> os.sep = "/"
>>> d.path('123/a', 'parsed', '.xhtml') == '/tmp/base/parsed/123/a.xhtml'
True
>>> d.storage_policy = "dir"
>>> d.path('123/a', 'parsed', '.xhtml') == '/tmp/base/parsed/123/a/index.xhtml
→˓'
True
>>> d.path('123/a', 'downloaded', None, 'r4711', 'appendix.txt') == '/tmp/
→˓base/archive/downloaded/123/a/r4711/appendix.txt'
True
>>> os.sep = realsep

Parameters

• basefile (str) – The basefile for which to calculate the path

• maindir – The processing stage directory (normally downloaded, parsed, or
generated)

• suffix (str) – The file extension including period (i.e. .txt, not txt)

• version (str) – Optional, the archived version id

• attachment (str) – Optional. Any associated file needed by the main file. Requires
that storage_policy is set to dir. suffix is ignored if this parameter is used.

Returns The full filesystem path

Return type str

open(basefile, maindir, suffix, mode=’r’, version=None, attachment=None, compression=None)
Context manager that opens files for reading or writing. The parameters are the same as for path(), and
the note is applicable here as well – use open_downloaded(), open_parsed() et al if possible.

Example:

>>> store = DocumentStore(datadir="/tmp/base")
>>> with store.open('123/a', 'parsed', '.xhtml', mode="w") as fp:
... res = fp.write("hello world")
>>> os.path.exists("/tmp/base/parsed/123/a.xhtml")
True

needed(basefile, action)
Determine if we really need to perform action for the given basefile, or if the result of the action (in the
form of the file that the action creates, or similar) is newer than all of the actions dependencies (in the form
of source files for the action).

18.1. Classes 117

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

list_basefiles_for(action, basedir=None, force=True)
Get all available basefiles that can be used for the specified action.

Parameters

• action (str) – The action for which to get available basefiles (parse, relate,
generate or news)

• basedir (str) – The base directory in which to search for available files. If not pro-
vided, defaults to self.datadir.

Returns All available basefiles

Return type generator

list_versions(basefile, action=None)
Get all archived versions of a given basefile.

Parameters

• basefile (str) – The basefile to list archived versions for

• action (str) – The type of file to look for (either downloaded, parsed or
generated. If None, look for all types.

Returns All available versions for that basefile

Return type generator

list_attachments(basefile, action, version=None)
Get all attachments for a basefile in a specified state

Parameters

• action (str) – The state (type of file) to look for (either downloaded, parsed or
generated. If None, look for all types.

• basefile (str) – The basefile to list attachments for

• version (str) – The version of the basefile to list attachments for. If None, list attach-
ments for the current version.

Returns All available attachments for the basefile

Return type generator

basefile_to_pathfrag(basefile)
Given a basefile, returns a string that can safely be used as a fragment of the path for any representation of
that file. The default implementation recognizes a number of characters that are unsafe to use in file names
and replaces them with HTTP percent-style encoding.

Example:

>>> d = DocumentStore("/tmp")
>>> realsep = os.sep
>>> os.sep = "/"
>>> d.basefile_to_pathfrag('1998:204') == '1998/%3A204'
True
>>> os.sep = realsep

If you wish to override how document files are stored in directories, you can override this method, but you
should make sure to also override pathfrag_to_basefile() to work as the inverse of this method.

Parameters basefile (str) – The basefile to encode

Returns The encoded path fragment

118 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

Return type str

pathfrag_to_basefile(pathfrag)
Does the inverse of basefile_to_pathfrag(), that is, converts a fragment of a file path into the
corresponding basefile.

Parameters pathfrag (str) – The path fragment to decode

Returns The resulting basefile

Return type str

archive(basefile, version)
Moves the current version of a document to an archive. All files related to the document are moved
(downloaded, parsed, generated files and any existing attachment files).

Parameters

• basefile (str) – The basefile of the document to archive

• version (str) – The version id to archive under

downloaded_path(basefile, version=None, attachment=None)
Get the full path for the downloaded file for the given basefile (and optionally archived version and/or
attachment filename).

Parameters

• basefile (str) – The basefile for which to calculate the path

• version (str) – Optional. The archived version id

• attachment (str) – Optional. Any associated file needed by the main file.

Returns The full filesystem path

Return type str

open_downloaded(basefile, mode=’r’, version=None, attachment=None)
Opens files for reading and writing, c.f. open(). The parameters are the same as for
downloaded_path().

documententry_path(basefile, version=None)
Get the full path for the documententry JSON file for the given basefile (and optionally archived version).

Parameters

• basefile (str) – The basefile for which to calculate the path

• version (str) – Optional. The archived version id

Returns The full filesystem path

Return type str

intermediate_path(basefile, version=None, attachment=None, suffix=None)
Get the full path for the main intermediate file for the given basefile (and optionally archived version).

Parameters

• basefile (str) – The basefile for which to calculate the path

• version (str) – Optional. The archived version id

• attachment – Optional. Any associated file created or retained in the intermediate step

Returns The full filesystem path

18.1. Classes 119

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

Return type str

open_intermediate(basefile, mode=’r’, version=None, attachment=None, suffix=None)
Opens files for reading and writing, c.f. open(). The parameters are the same as for
intermediate_path().

parsed_path(basefile, version=None, attachment=None)
Get the full path for the parsed XHTML file for the given basefile.

Parameters

• basefile (str) – The basefile for which to calculate the path

• version (str) – Optional. The archived version id

• attachment (str) – Optional. Any associated file needed by the main file (created by
parse())

Returns The full filesystem path

Return type str

open_parsed(basefile, mode=’r’, version=None, attachment=None)
Opens files for reading and writing, c.f. open(). The parameters are the same as for parsed_path().

serialized_path(basefile, version=None, attachment=None)
Get the full path for the serialized JSON file for the given basefile.

Parameters

• basefile (str) – The basefile for which to calculate the path

• version (str) – Optional. The archived version id

Returns The full filesystem path

Return type str

open_serialized(basefile, mode=’r’, version=None)
Opens files for reading and writing, c.f. open(). The parameters are the same as for
serialized_path().

distilled_path(basefile, version=None)
Get the full path for the distilled RDF/XML file for the given basefile.

Parameters

• basefile (str) – The basefile for which to calculate the path

• version (str) – Optional. The archived version id

Returns The full filesystem path

Return type str

open_distilled(basefile, mode=’r’, version=None)
Opens files for reading and writing, c.f. open(). The parameters are the same as for
distilled_path().

generated_path(basefile, version=None, attachment=None)
Get the full path for the generated file for the given basefile (and optionally archived version and/or attach-
ment filename).

Parameters

• basefile (str) – The basefile for which to calculate the path

120 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

• version (str) – Optional. The archived version id

• attachment (str) – Optional. Any associated file needed by the main file.

Returns The full filesystem path

Return type str

open_generated(basefile, mode=’r’, version=None, attachment=None)
Opens files for reading and writing, c.f. open(). The parameters are the same as for
generated_path().

annotation_path(basefile, version=None)
Get the full path for the annotation file for the given basefile (and optionally archived version).

Parameters

• basefile (str) – The basefile for which to calculate the path

• version (str) – Optional. The archived version id

Returns The full filesystem path

Return type str

open_annotation(basefile, mode=’r’, version=None)
Opens files for reading and writing, c.f. open(). The parameters are the same as for
annotation_path().

dependencies_path(basefile)
Get the full path for the dependency file for the given basefile

Parameters basefile (str) – The basefile for which to calculate the path

Returns The full filesystem path

Return type str

open_dependencies(basefile, mode=’r’)
Opens files for reading and writing, c.f. open(). The parameters are the same as for
dependencies_path().

atom_path(basefile)
Get the full path for the atom file for the given basefile

Note: This is used by ferenda.DocumentRepository.news() and does not really operate on
“real” basefiles. It might be removed. You probably shouldn’t use it unless you override news()

Parameters basefile (str) – The basefile for which to calculate the path

Returns The full filesystem path

Return type str

18.1. Classes 121

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

18.1.5 The Facet class

class ferenda.Facet(rdftype=rdflib.term.URIRef(’http://purl.org/dc/terms/title’), label=None,
pagetitle=None, indexingtype=None, selector=None, key=None, identifi-
cator=None, toplevel_only=None, use_for_toc=None, use_for_feed=None,
selector_descending=None, key_descending=None, multiple_values=None,
dimension_type=None, dimension_label=None)

Create a facet from the given rdftype and some optional parameters.

Parameters

• rdftype (rdflib.term.URIRef) – The type of facet being created

• label (str) – A template for the label property of TocPageset objects created from this
facet

• pagetitle (str) – A template for the title property of TocPage objects created from this
facet

• indexingtype (ferenda.fulltext.IndexedType) – Object specifying how to
store the data selected by this facet in the fulltext index

• selector (callable) – A function that takes (row, binding, resource_graph) and re-
turns a string acting as a category of some kind

• key (callable) – A function that takes (row, binding, resource_graph) and returns a
string usable for sorting

• toplevel_only (bool) – Whether this facet should be applied to documents only, or
any named (ie. given an URI) fragment of a document.

• use_for_toc (bool) – Whether this facet should be used for TOC generation

• use_for_feed (bool) – Whether this facet should be used for newsfeed generation

• selector_descending (bool) – Whether the values returned by selector should
be presented in lexical descending order

• key_descending (bool) – Whether documents, when sorted through the key function,
should be presented in reverse order.

• multiple_values (bool) – Whether more than one instance of the rdftype
value should be processed (such as multiple keywords each specified by one
dcterms:subject triple).

• dimension_type (str) – The general type of this facet – can be "type" (values are
rdf:type), "ref" (values are URIs), "year" (values are xsd:datetime or similar), or
"value" (values are string literals).

• dimension_label (str) – An alternate label for this facet to be used if the selector
logic is more transformative than selectional (ie. if it transforms dates to True or False values
depending on whether they’re April 1st, you might set this to “aprilfirst”)

• identificator (callable) – A function that takes (row, binding, resource_graph)
and returns an identifier-like string usable as an id string or URL segment.

If optional parameters aren’t provided, then appropriate values are selected if rdfrtype is one of some common
rdf properties:

122 Chapter 18. API reference

https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

facet description
rdf:type Grouped by qname() of the rdf:type of the document, eg. foaf:Document. Not used

for toc
dc-
terms:title

Grouped by first “sortable” letter, eg for a document titled “The Little Prince” returns “l”. Is used
as a facet for the API, but it’s debatable if it’s useful

dc-
terms:identifier

Also grouped by first sortable letter. When indexing, the resulting fulltext index field has a high
boost value, which increases the chances of this document ranking high when one searches for
its identifier.

dc-
terms:abstract

Not used for toc

dc:creator Should be a free-test (string literal) value
dc-
terms:publisher

Should be a URIRef

dc-
terms:references
dc-
terms:issued

Used for grouping documents published/issued in the same year

dc:subject A document can have multiple dc:subjects and all are indexed/processed
dc-
terms:subject

Works like dc:subject, but the value should be a URIRef

schema:freeA boolean value

This module contains a number of classmethods that can be used as arguments to selector and key, eg

>>> from rdflib import Namespace
>>> MYVOCAB = Namespace("http://example.org/vocab/")
>>> f = Facet(MYVOCAB.enactmentDate, selector=Facet.year)
>>> f.selector({'myvocab_enactmentDate': '2014-07-06'},
... 'myvocab_enactmentDate')
'2014'

classmethod defaultselector(row, binding, resource_graph=None)
This returns row[binding] without any transformation.

>>> row = {"rdf_type": "http://purl.org/ontology/bibo/Book",
... "dcterms_title": "A Tale of Two Cities",
... "dcterms_issued": "1859-04-30",
... "dcterms_publisher": "http://example.org/chapman_hall",
... "schema_free": "true"}
>>> Facet.defaultselector(row, "dcterms_title")
'A Tale of Two Cities'

classmethod defaultidentificator(row, binding, resource_graph=None)
This returns row[binding] run through a simple slug-like transformation.

>>> row = {"rdf_type": "http://purl.org/ontology/bibo/Book",
... "dcterms_title": "A Tale of Two Cities",
... "dcterms_issued": "1859-04-30",
... "dcterms_publisher": "http://example.org/chapman_hall",
... "schema_free": "true"}
>>> Facet.defaultidentificator(row, "dcterms_title")
'a-tale-of-two-cities'

classmethod year(row, binding=’dcterms_issued’, resource_graph=None)
This returns the the year part of row[binding].

18.1. Classes 123

https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph.qname

Ferenda Documentation, Release 0.3.1.dev1

>>> row = {"rdf_type": "http://purl.org/ontology/bibo/Book",
... "dcterms_title": "A Tale of Two Cities",
... "dcterms_issued": "1859-04-30",
... "dcterms_publisher": "http://example.org/chapman_hall",
... "schema_free": "true"}
>>> Facet.year(row, "dcterms_issued")
'1859'

classmethod booleanvalue(row, binding=’schema_free’, resource_graph=None)
Returns True iff row[binding] == “true”, False otherwise.

>>> row = {"rdf_type": "http://purl.org/ontology/bibo/Book",
... "dcterms_title": "A Tale of Two Cities",
... "dcterms_issued": "1859-04-30",
... "dcterms_publisher": "http://example.org/chapman_hall",
... "schema_free": "true"}
>>> Facet.booleanvalue(row, "schema_free")
True

classmethod titlesortkey(row, binding=’dcterms_title’, resource_graph=None)
Returns a version of row[binding] suitable for sorting. The function title_sortkey() is used for
string transformation.

>>> row = {"rdf_type": "http://purl.org/ontology/bibo/Book",
... "dcterms_title": "A Tale of Two Cities",
... "dcterms_issued": "1859-04-30",
... "dcterms_publisher": "http://example.org/chapman_hall",
... "schema_free": "true"}
>>> Facet.titlesortkey(row, "dcterms_title")
'ataleoftwocities'

classmethod firstletter(row, binding=’dcterms_title’, resource_graph=None)
Returns the first letter of row[binding], transformed into a sortable string.

>>> row = {"rdf_type": "http://purl.org/ontology/bibo/Book",
... "dcterms_title": "A Tale of Two Cities",
... "dcterms_issued": "1859-04-30",
... "dcterms_publisher": "http://example.org/chapman_hall",
... "schema_free": "true"}
>>> Facet.firstletter(row, "dcterms_title")
'a'

classmethod resourcelabel(row, binding=’dcterms_publisher’, resource_graph=None)
Lookup a suitable text label for row[binding] in resource_graph.

>>> row = {"rdf_type": "http://purl.org/ontology/bibo/Book",
... "dcterms_title": "A Tale of Two Cities",
... "dcterms_issued": "1859-04-30",
... "dcterms_publisher": "http://example.org/chapman_hall",
... "schema_free": "true"}
>>> import rdflib
>>> resources = rdflib.Graph().parse(format="turtle", data="""
... @prefix foaf: <http://xmlns.com/foaf/0.1/> .
...
... <http://example.org/chapman_hall> a foaf:Organization;
... foaf:name "Chapman & Hall" .
...

(continues on next page)

124 Chapter 18. API reference

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

... """)
>>> Facet.resourcelabel(row, "dcterms_publisher", resources)
'Chapman & Hall'

classmethod sortresource(row, binding=’dcterms_publisher’, resource_graph=None)
Returns a sortable version of the resource label for row[binding].

>>> row = {"rdf_type": "http://purl.org/ontology/bibo/Book",
... "dcterms_title": "A Tale of Two Cities",
... "dcterms_issued": "1859-04-30",
... "dcterms_publisher": "http://example.org/chapman_hall",
... "schema_free": "true"}
>>> import rdflib
>>> resources = rdflib.Graph().parse(format="turtle", data="""
... @prefix foaf: <http://xmlns.com/foaf/0.1/> .
...
... <http://example.org/chapman_hall> a foaf:Organization;
... foaf:name "Chapman & Hall" .
...
... """)
>>> Facet.sortresource(row, "dcterms_publisher", resources)
'chapmanhall'

classmethod term(row, binding=’dcterms_publisher’, resource_graph=None)
Returns the leaf part of the URI found in row[binding].

>>> row = {"rdf_type": "http://purl.org/ontology/bibo/Book",
... "dcterms_title": "A Tale of Two Cities",
... "dcterms_issued": "1859-04-30",
... "dcterms_publisher": "http://example.org/chapman_hall",
... "schema_free": "true"}
>>> Facet.term(row, "dcterms_publisher")
'chapman_hall'

classmethod qname(row, binding=’rdf_type’, resource_graph=None)
Returns the qname of the rdf URIref contained in row[binding], as determined by the namespace prefixes
registered in resource_graph.

>>> row = {"rdf_type": "http://purl.org/ontology/bibo/Book",
... "dcterms_title": "A Tale of Two Cities",
... "dcterms_issued": "1859-04-30",
... "dcterms_publisher": "http://example.org/chapman_hall",
... "schema_free": "true"}
>>> import rdflib
>>> resources = rdflib.Graph()
>>> resources.bind("bibo", "http://purl.org/ontology/bibo/")
>>> Facet.qname(row, "rdf_type", resources)
'bibo:Book'

classmethod resourcelabel_or_qname(row, binding=’rdf_type’, resource_graph=None)

18.1.6 The ResourceLoader class

class ferenda.ResourceLoader(*loadpath, **kwargs)

18.1. Classes 125

Ferenda Documentation, Release 0.3.1.dev1

static make_loadpath(instance, suffix=’res’)
Given an object instance, returns a list of path locations corresponding to the physical location of the
implementation of that instance, with a specified suffix.

ie. if provided an Foo instance, whose class is defined in project/subclass/foo.py, and Foo derives from
Bar, whose class is defined in project/bar.py, the returned make_loadpath will return ['project/
subclass/res', 'project/res']

exists(resourcename)
Returns True iff the named resource can be found anywhere in any place where this loader searches, False
otherwise

load(resourcename, binary=False)
Returns the contents of the resource, either as a string or a bytes object, depending on whether binary is
False or True.

Might raise ResourceNotFound.

openfp(resourcename, binary=False)
Opens the specified resource and returns a open file object. Caller must call .close() on this object when
done.

Might raise ResourceNotFound.

open(resourcename, binary=False)
Opens the specified resource as a context manager, ie call with with:

>>> loader = ResourceLoader()
>>> with resource.open("robots.txt") as fp:
... fp.read()

Might raise ResourceNotFound.

filename(resourcename)
Return a filename pointing to the physical location of the resource. If the resource is only found using the
ResourceManager API, extract ‘ the resource to a temporary file and return its path.

Might raise ResourceNotFound.

extractdir(resourcedir, target, suffixes=None)
Extract all file resources contained in the specified resource directory to the target directory.

Searches all loadpaths and optionally the Resources API for any file contained within. This means the tar-
get dir may end up with eg. one file from a high-priority path and other files from the system dirs/resources.
This in turns makes it easy to just override a single file in a larger set of resource files.

Even if the resourcedir might contain resources in subdirectories (eg “source/sub/dir/resource.xml”), the
extraction will be to the top-level target directory (eg “target/resource.xml”).

18.1.7 The TocPage class

class ferenda.TocPage(linktext, title, binding, value)
Represents a particular TOC page.

Parameters

• linktext – The text used for TOC links to this page, like “a” or “2013”.

• linktext – str

• label (str) – A description of this page, like “Documents starting with ‘a’”

126 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

• binding (str) – The variable binding used for defining this TOC page, like “title” or
“issued”

• value (str) – The particular value of bound variable that corresponds to this TOC page,
like “a” or “2013”. The selector function of a Facet object is used to select this value
out of the raw data.

18.1.8 The TocPageset class

class ferenda.TocPageset(label, pages, predicate=None)
Represents a particular set of TOC pages, structured around some particular attribute(s) of documents, like title
or publication date. toc_pagesets() returns a list of these objects, override that method to provide custom
TocPageset objects.

Parameters

• label (str) – A description of this set of TOC pages, like “By publication year”

• pages (list) – The set of TocPage objects that makes up this page set.

• predicate (rdflib.term.URIRef) – The RDFLib predicate (if any) that this page-
set is keyed on.

18.1.9 The Feed class

class ferenda.Feed(slug, title, binding, value)
Represents a particular Feed of new or updated items selected by some criteria.

Parameters

• label (str) – A description of this feed, like “Documents published by XYZ”

• binding (str) – The variable binding used for defining this feed, like “title” or “issued”

• value (str) – The particular value of bound variable that corresponds to this TOC page,
like “a” or “2013”. The selector function of a Facet object is used to select this value
out of the raw data.

classmethod all(row, entry)

18.1.10 The Feedset class

class ferenda.Feedset(label, feeds, predicate=None)
Represents a particular set of feeds, structured around some ke particular attribute(s) of documents, like title or
publication date.

Parameters

• label (str) – A description of this set of feeds, like “By publisher”

• feeds (list) – The set of Feed objects that makes up this page set.

• predicate (rdflib.term.URIRef) – The predicate (if any) that this feedset is keyed
on.

18.1. Classes 127

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef

Ferenda Documentation, Release 0.3.1.dev1

18.1.11 The elements classes

18.1.12 The elements.html classes

The purpose of this module is to provide classes corresponding to most elements (except <style>, <script>
and similar non-document content elements) and core attributes (except @style and the %events attributes) of
HTML4.01 and HTML5. It is not totally compliant with the HTML4.01 and HTML5 standards, but is enough to
model most real-world HTML. It contains no provisions to ensure that elements of a particular kind only contain
allowed sub-elements.

ferenda.elements.html.elements_from_soup(soup, remove_tags=(’script’, ’style’, ’font’,
’map’, ’center’), keep_attributes=(’class’, ’id’,
’dir’, ’lang’, ’src’, ’href’, ’name’, ’alt’))

Converts a BeautifulSoup tree into a tree of ferenda.elements.html.HTMLElement objects. Some
non-semantic attributes and tags are removed in the process.

Parameters

• soup – Soup object to convert

• remove_tags (list) – Tags that should not be included

• keep_attributes (list) – Attributes to keep

Returns tree of element objects

Return type ferenda.elements.html.HTMLElement

class ferenda.elements.html.HTMLElement(*args, **kwargs)
Abstract base class for all elements.

class ferenda.elements.html.HTML(*args, **kwargs)
Element corresponding to the <html> tag

class ferenda.elements.html.Head(*args, **kwargs)
Element corresponding to the <head> tag

class ferenda.elements.html.Title(*args, **kwargs)
Element corresponding to the <title> tag

class ferenda.elements.html.Body(*args, **kwargs)
Element corresponding to the <body> tag

as_xhtml(uri, parent_uri=None)
Converts this object to a lxml.etree object (with children)

Parameters uri (str) – If provided, gets converted to an @about attribute in the resulting
XHTML.

class ferenda.elements.html.P(*args, **kwargs)
Element corresponding to the <p> tag

class ferenda.elements.html.H1(*args, **kwargs)
Element corresponding to the <h1> tag

class ferenda.elements.html.H2(*args, **kwargs)
Element corresponding to the <h2> tag

class ferenda.elements.html.H3(*args, **kwargs)
Element corresponding to the <h3> tag

class ferenda.elements.html.H4(*args, **kwargs)
Element corresponding to the <h4> tag

128 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

class ferenda.elements.html.H5(*args, **kwargs)
Element corresponding to the <h5> tag

class ferenda.elements.html.H6(*args, **kwargs)
Element corresponding to the <h6> tag

class ferenda.elements.html.UL(*args, **kwargs)
Element corresponding to the tag

class ferenda.elements.html.OL(*args, **kwargs)
Element corresponding to the tag

class ferenda.elements.html.LI(*args, **kwargs)
Element corresponding to the tag

class ferenda.elements.html.Pre(*args, **kwargs)
Element corresponding to the <pre> tag

class ferenda.elements.html.DL(*args, **kwargs)
Element corresponding to the <dl> tag

class ferenda.elements.html.DT(*args, **kwargs)
Element corresponding to the <dt> tag

class ferenda.elements.html.DD(*args, **kwargs)
Element corresponding to the <dd> tag

class ferenda.elements.html.Div(*args, **kwargs)
Element corresponding to the <div> tag

class ferenda.elements.html.Blockquote(*args, **kwargs)
Element corresponding to the <blockquote> tag

class ferenda.elements.html.Form(*args, **kwargs)
Element corresponding to the <form> tag

class ferenda.elements.html.HR(*args, **kwargs)
Element corresponding to the <hr> tag

class ferenda.elements.html.Table(*args, **kwargs)
Element corresponding to the <table> tag

class ferenda.elements.html.Fieldset(*args, **kwargs)
Element corresponding to the <fieldset> tag

class ferenda.elements.html.Address(*args, **kwargs)
Element corresponding to the <address> tag

class ferenda.elements.html.TT(*args, **kwargs)
Element corresponding to the <tt > tag

class ferenda.elements.html.I(*args, **kwargs)
Element corresponding to the <i > tag

class ferenda.elements.html.B(*args, **kwargs)
Element corresponding to the tag

class ferenda.elements.html.U(*args, **kwargs)
Element corresponding to the <u > tag

class ferenda.elements.html.Big(*args, **kwargs)
Element corresponding to the <big > tag

18.1. Classes 129

Ferenda Documentation, Release 0.3.1.dev1

class ferenda.elements.html.Small(*args, **kwargs)
Element corresponding to the <small> tag

class ferenda.elements.html.Em(*args, **kwargs)
Element corresponding to the tag

class ferenda.elements.html.Strong(*args, **kwargs)
Element corresponding to the tag

class ferenda.elements.html.Dfn(*args, **kwargs)
Element corresponding to the <dfn > tag

class ferenda.elements.html.Code(*args, **kwargs)
Element corresponding to the <code > tag

class ferenda.elements.html.Samp(*args, **kwargs)
Element corresponding to the <samp > tag

class ferenda.elements.html.Kbd(*args, **kwargs)
Element corresponding to the <kbd > tag

class ferenda.elements.html.Var(*args, **kwargs)
Element corresponding to the <var > tag

class ferenda.elements.html.Cite(*args, **kwargs)
Element corresponding to the <cite > tag

class ferenda.elements.html.Abbr(*args, **kwargs)
Element corresponding to the <abbr > tag

class ferenda.elements.html.Acronym(*args, **kwargs)
Element corresponding to the <acronym> tag

class ferenda.elements.html.A(*args, **kwargs)
Element corresponding to the <a > tag

class ferenda.elements.html.Img(*args, **kwargs)
Element corresponding to the tag

class ferenda.elements.html.Object(*args, **kwargs)
Element corresponding to the <object > tag

class ferenda.elements.html.Br(*args, **kwargs)
Element corresponding to the
 tag

class ferenda.elements.html.Q(*args, **kwargs)
Element corresponding to the <q > tag

class ferenda.elements.html.Sub(*args, **kwargs)
Element corresponding to the <sub > tag

class ferenda.elements.html.Sup(*args, **kwargs)
Element corresponding to the <sup > tag

class ferenda.elements.html.Span(*args, **kwargs)
Element corresponding to the tag

class ferenda.elements.html.BDO(*args, **kwargs)
Element corresponding to the <bdo> tag

class ferenda.elements.html.Input(*args, **kwargs)
Element corresponding to the <input> tag

130 Chapter 18. API reference

Ferenda Documentation, Release 0.3.1.dev1

class ferenda.elements.html.Select(*args, **kwargs)
Element corresponding to the <select> tag

class ferenda.elements.html.Textarea(*args, **kwargs)
Element corresponding to the <textarea> tag

class ferenda.elements.html.Label(*args, **kwargs)
Element corresponding to the <label> tag

class ferenda.elements.html.Button(*args, **kwargs)
Element corresponding to the <button> tag

class ferenda.elements.html.Caption(*args, **kwargs)
Element corresponding to the <caption> tag

class ferenda.elements.html.Thead(*args, **kwargs)
Element corresponding to the <thead> tag

class ferenda.elements.html.Tfoot(*args, **kwargs)
Element corresponding to the <tfoot> tag

class ferenda.elements.html.Tbody(*args, **kwargs)
Element corresponding to the <tbody> tag

class ferenda.elements.html.Colgroup(*args, **kwargs)
Element corresponding to the <colgroup> tag

class ferenda.elements.html.Col(*args, **kwargs)
Element corresponding to the <col> tag

class ferenda.elements.html.TR(*args, **kwargs)
Element corresponding to the <tr> tag

class ferenda.elements.html.TH(*args, **kwargs)
Element corresponding to the <th> tag

class ferenda.elements.html.TD(*args, **kwargs)
Element corresponding to the <td> tag

class ferenda.elements.html.Ins(*args, **kwargs)
Element corresponding to the <ins> tag

class ferenda.elements.html.Del(*args, **kwargs)
Element corresponding to the tag

class ferenda.elements.html.HTML5Element(*args, **kwargs)

tagname = 'div'

classname

class ferenda.elements.html.Article(*args, **kwargs)
Element corresponding to the <article> tag

class ferenda.elements.html.Aside(*args, **kwargs)
Element corresponding to the <aside> tag

class ferenda.elements.html.Bdi(*args, **kwargs)
Element corresponding to the <bdi> tag

class ferenda.elements.html.Details(*args, **kwargs)
Element corresponding to the <details> tag

18.1. Classes 131

Ferenda Documentation, Release 0.3.1.dev1

class ferenda.elements.html.Dialog(*args, **kwargs)
Element corresponding to the <dialog> tag

class ferenda.elements.html.Summary(*args, **kwargs)
Element corresponding to the <summary> tag

class ferenda.elements.html.Figure(*args, **kwargs)
Element corresponding to the <figure> tag

class ferenda.elements.html.Figcaption(*args, **kwargs)
Element corresponding to the <figcaption> tag

class ferenda.elements.html.Footer(*args, **kwargs)
Element corresponding to the <footer> tag

class ferenda.elements.html.Header(*args, **kwargs)
Element corresponding to the <header> tag

class ferenda.elements.html.Hgroup(*args, **kwargs)
Element corresponding to the <hgroup> tag

class ferenda.elements.html.Mark(*args, **kwargs)
Element corresponding to the <mark> tag

class ferenda.elements.html.Meter(*args, **kwargs)
Element corresponding to the <meter> tag

class ferenda.elements.html.Nav(*args, **kwargs)
Element corresponding to the <nav> tag

class ferenda.elements.html.Progress(*args, **kwargs)
Element corresponding to the <progress> tag

class ferenda.elements.html.Ruby(*args, **kwargs)
Element corresponding to the <ruby> tag

class ferenda.elements.html.Rt(*args, **kwargs)
Element corresponding to the <rt> tag

class ferenda.elements.html.Rp(*args, **kwargs)
Element corresponding to the <rp> tag

class ferenda.elements.html.Section(*args, **kwargs)
Element corresponding to the <section> tag

class ferenda.elements.html.Time(*args, **kwargs)
Element corresponding to the <time> tag

class ferenda.elements.html.Wbr(*args, **kwargs)
Element corresponding to the <wbr> tag

18.1.13 The Describer class

class ferenda.Describer(graph=None, about=None, base=None)
Extends the utility class rdflib.extras.describer.Describer so that it reads values and refences as
well as write them.

Parameters

• graph (Graph) – The graph to read from and write to

• about (string or Identifier) – the current subject to use

132 Chapter 18. API reference

https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.extras.html#rdflib.extras.describer.Describer
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.Identifier

Ferenda Documentation, Release 0.3.1.dev1

• base (string) – Base URI for any relative URIs used with about(), rel() or rev(),

getvalues(p)
Get a list (possibly empty) of all literal values for the given property and the current subject. Values will
be converted to plain literals, i.e. not rdflib.term.Literal objects.

Parameters p (rdflib.term.URIRef) – The property of the sought literal.

Returns a list of matching literals

Return type list of strings (or other appropriate python type if the literal has a datatype)

getrels(p)
Get a list (possibly empty) of all URIs for the given property and the current subject. Values will be
converted to strings, i.e. not rdflib.term.URIRef objects.

Parameters p (rdflib.term.URIRef) – The property of the sought URI.

Returns The matching URIs

Return type list of strings

getrdftype()
Get the rdf:type of the current subject.

Returns The URI of the current subjects’s rdf:type.

Return type string

getvalue(p)
Get a single literal value for the given property and the current subject. If the graph contains zero or more
than one such literal, a KeyError will be raised.

Note: If this is all you use Describer for, you might want to use rdflib.graph.Graph.value()
instead – the main advantage that this method has is that it converts the return value to a plain python object
instead of a rdflib.term.Literal object.

Parameters p (rdflib.term.URIRef) – The property of the sought literal.

Returns The sought literal

Return type string (or other appropriate python type if the literal has a datatype)

getrel(p)
Get a single URI for the given property and the current subject. If the graph contains zero or more than
one such URI, a KeyError will be raised.

Parameters p (rdflib.term.URIRef) – The property of the sought literal.

Returns The sought URI

Return type string

about(subject, **kws)
Sets the current subject. Will convert the given object into an URIRef if it’s not an Identifier.

Usage:

>>> d = Describer()
>>> d._current()
rdflib.term.BNode(...)
>>> d.about("http://example.org/")

(continues on next page)

18.1. Classes 133

https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.Literal
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef
https://docs.python.org/3/library/exceptions.html#KeyError
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph.value
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.Literal
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef
https://docs.python.org/3/library/exceptions.html#KeyError
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.term.URIRef

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

>>> d._current()
rdflib.term.URIRef('http://example.org/')

rdftype(t)
Shorthand for setting rdf:type of the current subject.

Usage:

>>> from rdflib import URIRef
>>> from rdflib.namespace import RDF, RDFS
>>> d = Describer(about="http://example.org/")
>>> d.rdftype(RDFS.Resource)
>>> (URIRef('http://example.org/'),
... RDF.type, RDFS.Resource) in d.graph
True

rel(p, o=None, **kws)
Set an object for the given property. Will convert the given object into an URIRef if it’s not an
Identifier. If none is given, a new BNode is used.

Returns a context manager for use in a with block, within which the given object is used as current
subject.

Usage:

>>> from rdflib import URIRef
>>> from rdflib.namespace import RDF, RDFS
>>> d = Describer(about="/", base="http://example.org/")
>>> _ctxt = d.rel(RDFS.seeAlso, "/about")
>>> d.graph.value(URIRef('http://example.org/'), RDFS.seeAlso)
rdflib.term.URIRef('http://example.org/about')

>>> with d.rel(RDFS.seeAlso, "/more"):
... d.value(RDFS.label, "More")
>>> (URIRef('http://example.org/'), RDFS.seeAlso,
... URIRef('http://example.org/more')) in d.graph
True
>>> d.graph.value(URIRef('http://example.org/more'), RDFS.label)
rdflib.term.Literal('More')

rev(p, s=None, **kws)
Same as rel, but uses current subject as object of the relation. The given resource is still used as subject
in the returned context manager.

Usage:

>>> from rdflib import URIRef
>>> from rdflib.namespace import RDF, RDFS
>>> d = Describer(about="http://example.org/")
>>> with d.rev(RDFS.seeAlso, "http://example.net/"):
... d.value(RDFS.label, "Net")
>>> (URIRef('http://example.net/'), RDFS.seeAlso,
... URIRef('http://example.org/')) in d.graph
True
>>> d.graph.value(URIRef('http://example.net/'), RDFS.label)
rdflib.term.Literal('Net')

134 Chapter 18. API reference

Ferenda Documentation, Release 0.3.1.dev1

value(p, v, **kws)
Set a literal value for the given property. Will cast the value to an Literal if a plain literal is given.

Usage:

>>> from rdflib import URIRef
>>> from rdflib.namespace import RDF, RDFS
>>> d = Describer(about="http://example.org/")
>>> d.value(RDFS.label, "Example")
>>> d.graph.value(URIRef('http://example.org/'), RDFS.label)
rdflib.term.Literal('Example')

18.1.14 The Transformer class

class ferenda.Transformer(transformertype, template, templatedir, resourceloader=None, docu-
mentroot=None, config=None)

Transforms parsed “pure content” documents into “browser-ready” HTML5 files with site branding and naviga-
tion, using a template of some kind.

Parameters

• transformertype (str) – The engine to be used for transforming. Right now only
"XSLT" is supported.

• resourceloader – The ResourceLoader instance used to find template files.

• template (str) – The name of the main template file.

• templatedir (str) – Directory for supporting templates to the main template.

• documentroot (str) – The base directory for all generated files – used to make relative
references to CSS/JS files correct.

• config – Any configuration information used by the transforming engine. Can be a path
to a config file, a python data structure, or anything else compatible with the engine selected
by transformertype.

Note: An initialized Transformer object only transforms using the template file provided at initialization. If
you need to use another template file, create another Transformer object.

transform(indata, depth, parameters=None, uritransform=None)
Perform the transformation. This method always operates on the “native” datastructure – this might be
different depending on the transformer engine. For XSLT, which is implemented through lxml, its in- and
outdata are lxml trees

If you need an engine-indepent API, use transform_stream() or transform_file() instead

Parameters

• indata – The document to be transformed

• depth (int) – The directory nesting level, compared to documentroot

• parameters (dict) – Any parameters that should be provided to the template

• uritransform (callable) – A function, when called with an URI, returns a trans-
formed URI/URL (such as the relative path to a static file) – used when transforming to
files used for static offline use.

Returns The transformed document

18.1. Classes 135

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Ferenda Documentation, Release 0.3.1.dev1

transform_links(tree, uritransform)

transform_stream(instream, depth, parameters=None, uritransform=None)
Accepts a file-like object, returns a file-like object.

transform_file(infile, outfile, parameters=None, uritransform=None, depth=None)
Accepts two filenames, reads from infile, writes to outfile.

18.1.15 The FSMParser class

class ferenda.FSMParser
A configurable finite state machine (FSM) for parsing documents with nested structure. You provide a set of
recognizers, a set of constructors, a transition table and a stream of document text chunks, and it returns a
hierarchical document object structure.

See Parsing document structure.

set_recognizers(*args)
Set the list of functions (or other callables) used in order to recognize symbols from the stream of text
chunks. Recognizers are tried in the order specified here.

remove_recognizer(recognizer)

set_transitions(transitions)
Set the transition table for the state matchine.

Parameters transitions – The transition table, in the form of a mapping between two tu-
ples. The first tuple should be the current state (or a list of possible current states) and a
callable function that determines if a particular symbol is recognized (currentstate,
recognizer). The second tuple should be a constructor function (or False‘‘) and the new
state to transition into.

parse(chunks)
Parse a document in the form of an iterable of suitable chunks – often lines or elements. each chunk should
be a string or a string-like obje ct. Some examples:

p = FSMParser()
reader = TextReader("foo.txt")
body = p.parse(reader.getiterator(reader.readparagraph),"body", make_body)
body = p.parse(BeautifulSoup("foo.html").find_all("#main p"), "body", make_
→˓body)
body = p.parse(ElementTree.parse("foo.xml").find(".//paragraph"), "body",
→˓make_body)

Parameters

• chunks – The document to be parsed, as a list or any other iterable of text-like objects.

• initialstate – The initial state for the machine. The state must be present in the
transition table. This could be any object, but strings are preferrable as they make error
messages easier to understand.

• initialconstructor (callable) – A function that creates a document root object,
and then fills it with child objects using .make_children()

Returns A document object tree.

analyze_symbol()
Internal function used by make_children()

136 Chapter 18. API reference

Ferenda Documentation, Release 0.3.1.dev1

transition(currentstate, symbol)
Internal function used by make_children()

make_child(constructor, childstate)
Internal function used by make_children(), which calls one of the constructors defined in the transition
table.

make_children(parent)
Creates child nodes for the current (parent) document node.

Parameters parent – The parent document node, as any list-like object (preferrably a subclass
of ferenda.elements.CompoundElement)

Returns The same parent object.

18.1.16 The CitationParser class

class ferenda.CitationParser(*grammars)
Finds citations to documents and other resources in text strings. Each type of citation is specified by a pyparsing
grammar, and for each found citation a URI can be constructed using a URIFormatter object.

Parameters grammars (list of pyparsing.ParserElement objects) – The grammar(s) for
the citations that this parser should find, in order of priority.

Usage:

>>> from pyparsing import Word,nums
>>> rfc_grammar = ("RFC " + Word(nums).setResultsName("rfcnumber")).
→˓setResultsName("rfccite")
>>> pep_grammar = ("PEP" + Word(nums).setResultsName("pepnumber")).
→˓setResultsName("pepcite")
>>> citparser = CitationParser(rfc_grammar, pep_grammar)
>>> res = citparser.parse_string("The WSGI spec (PEP 333) references RFC 2616
→˓(The HTTP spec)")
>>> # res is a list of strings and/or pyparsing.ParseResult objects
>>> from ferenda import URIFormatter
>>> from ferenda.elements import Link
>>> f = URIFormatter(('rfccite',
... lambda p: "http://www.rfc-editor.org/rfc/rfc%(rfcnumber)s"
→˓% p),
... ('pepcite',
... lambda p: "http://www.python.org/dev/peps/pep-0
→˓%(pepnumber)s/" % p))
>>> citparser.set_formatter(f)
>>> res = citparser.parse_recursive(["The WSGI spec (PEP 333) references RFC 2616
→˓(The HTTP spec)"])
>>> res == ['The WSGI spec (', Link('PEP 333',uri='http://www.python.org/dev/peps/
→˓pep-0333/'), ') references ', Link('RFC 2616',uri='http://www.rfc-editor.org/
→˓rfc/rfc2616'), ' (The HTTP spec)']
True

set_formatter(formatter)
Specify how found citations are to be formatted when using parse_recursive()

Parameters formatter (URIFormatter) – The formatter object to use for all citations

add_grammar(grammar)
Add another grammar.

Parameters grammar (pyparsing.ParserElement) – The grammar to add

18.1. Classes 137

http://pyparsing.wikispaces.com/Documentation

Ferenda Documentation, Release 0.3.1.dev1

parse_string(string, predicate=’dcterms:references’)
Find any citations in a text string, using the configured grammars.

Parameters string (str) – Text to parse for citations

Returns strings (for parts of the input text that do not contain any citation) and/or tuples (for
found citation) consisting of (string, pyparsing.ParseResult)

Return type list

parse_recursive(part, predicate=’dcterms:references’)
Traverse a nested tree of elements, finding citations in any strings contained in the tree. Found ci-
tations are marked up as Link elements with the uri constructed by the URIFormatter set by
set_formatter().

Parameters part (list) – The root element of the structure to parse

Returns a correspondingly nested structure.

Return type list

18.1.17 The URIFormatter class

class ferenda.URIFormatter(*formatters)
Companion class to ferenda.CitationParser, that handles the work of formatting the dicts or dict-like
objects that CitationParser creates.

The class is initialized with a list of formatters, where each formatter is a tuple (key, callable). When format()
is passed a citation reference in the form of a pyparsing.ParseResult object (which has a .getName
method), the name of that reference is matched against the key of all formatters. If there is a match, the
corresponding callable is called with the parseresult object as a single parameter, and the resulting string is
returned.

An initialized URIFormatter object is not used directly. Instead, call ferenda.CitationParser.
set_formatter() with the object as parameter. See Citation parsing.

Parameters *formatters (list) – Formatters, each provided as a (name, callable) tuple.

format(parseresult)
Given a pyparsing.ParseResult object, finds a appropriate formatter for that result, and formats the result
into a URI using that formatter.

addformatter(key, func)
Add a single formatter to the list of registered formatters after initialization.

formatterfor(key)
Returns an appropriate formatting callable for the given key, or None if not found.

18.1.18 The TripleStore class

class ferenda.TripleStore(location, repository, **kwargs)
Presents a limited but uniform interface to different triple stores. It supports both standalone servers accessed
over HTTP (Fuseki and Sesame, right now) as well as RDFLib-based persistant stores (The SQLite and Sleep-
ycat/BerkeleyDB backends are supported).

Note: This class does not implement the RDFlib store interface. Instead, it provides a small list of
operations that is generally useful for the kinds of things that ferenda-based applications need to do.

138 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
http://rdflib.readthedocs.org/en/latest/univrdfstore.html

Ferenda Documentation, Release 0.3.1.dev1

This class is an abstract base class, and is not directly instantiated. Instead, call connect(), which
returns an initialized object of the appropriate subclass. All subclasses implements the following
API.

static connect(storetype, location, repository, **kwargs)
Returns a initialized object, the exact type depending on the storetype parameter.

Parameters

• storetype – The type of store to connect to ("FUSEKI", "SESAME", "SLEEPYCAT"
or "SQLITE")

• location – The URL or file path where the main repository is stored

• repository – The name of the repository to use with the main repository storage

• **kwargs – Any other named parameters are passed to the appropriate class constructor
(see “Store-specific parameters” below).

Example:

>>> # creates a new SQLite db at /tmp/test.sqlite if not already present
>>> sqlitestore = TripleStore.connect("SQLITE", "/tmp/test.sqlite", "myrepo")
>>> sqlitestore.triple_count()
0
>>> sqlitestore.close()
>>> # connect to same db, but store all triples in memory (read-only)
>>> sqlitestore = TripleStore.connect("SQLITE", "/tmp/test.sqlite", "myrepo",
→˓inmemory=True)
>>> # connect to a remote Fuseki store over HTTP, using the command-line
>>> # tool curl for faster batch up/downloads
>>> fusekistore = TripleStore.connect("FUSEKI", "http://localhost:3030/", "ds
→˓", curl=True)

Store-specific parameters:

When using storetypes SQLITE or SLEEPYCAT, the select() and construct() methods can be
sped up (around 150%) by loading the entire content of the triple store into memory, by setting the
inmemory parameter to True

When using storetypes FUSEKI or SESAME, storage and retrieval of a large number of triples (particu-
larly the add_serialized_file() and get_serialized_file() methods) can be sped up by
setting the curl parameter to True, if the command-line tool curl is available.

re_fromgraph = re.compile('\\sFROM <(?P<graphuri>[^>]+)>\\s')
Internal utility regex to determine wether a query specifies a particular graph to select against.

add_serialized(data, format, context=None)
Add the serialized RDF statements in the string data directly to the repository.

add_serialized_file(filename, format, context=None)
Add the serialized RDF statements contained in the file filename directly to the repository.

get_serialized(format=’nt’, context=None)
Returns a string containing all statements in the store, serialized in the selected format. Returns byte string,
not unicode array!

get_serialized_file(filename, format=’nt’, context=None)
Saves all statements in the store to filename.

select(query, format=’sparql’)
Run a SPARQL SELECT query against the triple store and returns the results.

18.1. Classes 139

http://curl.haxx.se/

Ferenda Documentation, Release 0.3.1.dev1

Parameters

• query (str) – A SPARQL query with all neccessary prefixes defined.

• format (str) – Either one of the standard formats for queries ("sparql", "json" or
"binary") – returns whatever requests.get().content returns – or the special
value "python" which returns a python list of dicts representing rows and columns.

construct(query)
Run a SPARQL CONSTRUCT query against the triple store and returns the results as a RDFLib graph

Parameters query (str) – A SPARQL query with all neccessary prefixes defined.

update(query)
Run a SPARQL UPDATE (or DELETE/DROP/CLEAR) against the triplestore. Returns nothing but may
raise an exception if something went wrong.

Parameters query (str) – A SPARQL query with all neccessary prefixes defined.

triple_count(context=None)
Returns the number of triples in the repository.

clear(context=None)
Removes all statements from the repository (without removing the repository as such).

close()
Close all connections to the triplestore. Needed if using RDFLib-based triple store, a no-op if using HTTP
based stores.

18.1.19 The FulltextIndex class

Abstracts access to full text indexes (right now only Whoosh and ElasticSearch is supported, but maybe later, Solr,
Xapian and/or Sphinx will be supported).

class ferenda.FulltextIndex(location, repos)
This is the abstract base class for a fulltext index. You use it by calling the static method FulltextIndex.connect,
passing a string representing the underlying fulltext engine you wish to use. It returns a subclass on which you
then call further methods.

indextypes = {'ELASTICSEARCH': <class 'ferenda.fulltextindex.ElasticSearchIndex'>, 'ELASTICSEARCH2': <class 'ferenda.fulltextindex.ElasticSearch2x'>, 'WHOOSH': <class 'ferenda.fulltextindex.WhooshIndex'>}

classmethod connect(indextype, location, repos)
Open a fulltext index (creating it if it doesn’t already exists).

Parameters

• location (str) – Type of fulltext index (“WHOOSH” or “ELASTICSEARCH”)

• location – The file path of the fulltext index.

make_schema(repos)

get_default_schema()

exists()
Whether the fulltext index exists.

create(repos)
Creates a fulltext index using the provided schema.

destroy()
Destroys the index, if created.

140 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pypi.python.org/pypi/Whoosh
http://www.elasticsearch.org/
http://lucene.apache.org/solr/
http://xapian.org/
http://sphinxsearch.com/
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

open()
Opens the index so that it can be queried.

schema()
Returns the schema that actually is in use. A schema is a dict where the keys are field names and the values
are any subclass of ferenda.fulltextindex.IndexedType

update(uri, repo, basefile, text, **kwargs)
Insert (or update) a resource in the fulltext index. A resource may be an entire document, but it can also
be any part of a document that is referenceable (i.e. a document node that has @typeof and @about
attributes). A document with 100 sections can be stored as 100 independent resources, as long as each
section has a unique key in the form of a URI.

Parameters

• uri (str) – URI for the resource

• repo (str) – The alias for the document repository that the resource is part of

• basefile (str) – The basefile which contains resource

• title (str) – User-displayable title of resource (if applicable). Should not contain the
same information as identifier.

• identifier (str) – User-displayable short identifier for resource (if applicable)

Note: Calling this method may not directly update the fulltext index – you need to call commit() or
close() for that.

commit()
Commit all pending updates to the fulltext index.

close()
Commits all pending updates and closes the index.

doccount()
Returns the number of currently indexed (non-deleted) documents.

query(q=None, pagenum=1, pagelen=10, ac_query=False, exclude_types=None, **kwargs)

Perform a free text query against the full text index, optionally restricted with parameters for individ-
ual fields.

Parameters

• q (str) – Free text query, using the selected full text index’s prefered query syntax

• **kwargs (dict) – any parameter will be used to match a similarly-named field

Returns matching documents, each document as a dict of fields

Return type list

Note: The kwargs parameters do not yet do anything – only simple full text queries are possible.

fieldmapping = ()
A tuple of (abstractfield, nativefield) tuples. Each abstractfield should be a instance
of a IndexedType-derived class. Each nativefield should be whatever kind of object that is used with
the native fullltextindex API.

18.1. Classes 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Ferenda Documentation, Release 0.3.1.dev1

The methods to_native_field() and from_native_field() uses this tuple of tuples to convert
fields.

to_native_field(fieldobject)
Given a abstract field (an instance of a IndexedType-derived class), convert to the corresponding native
type for the fulltextindex in use.

from_native_field(fieldobject)
Given a fulltextindex native type, convert to the corresponding IndexedType object.

Datatype field classes

class ferenda.fulltextindex.IndexedType(**kwargs)
Base class for a fulltext searchengine-independent representation of indexed data. By using IndexType-derived
classes to represent the schema, it becomes possible to switch out search engines without affecting the rest of
the code.

class ferenda.fulltextindex.Identifier(**kwargs)
An identifier is a string, normally in the form of a URI, which uniquely identifies an indexed document.

class ferenda.fulltextindex.Datetime(**kwargs)

class ferenda.fulltextindex.Text(**kwargs)

class ferenda.fulltextindex.Label(**kwargs)

class ferenda.fulltextindex.Keyword(**kwargs)
A keyword is a single string from a controlled vocabulary.

class ferenda.fulltextindex.Boolean(**kwargs)

class ferenda.fulltextindex.URI(**kwargs)
Any URI (except the URI that identifies a indexed document – use Identifier for that).

class ferenda.fulltextindex.Resource(**kwargs)
A fulltextindex.Resource is a URI that also has a human-readable label.

Search field classes

class ferenda.fulltextindex.SearchModifier(*values)

class ferenda.fulltextindex.Less(max)

class ferenda.fulltextindex.More(min)

class ferenda.fulltextindex.Between(min, max)

18.1.20 The TextReader class

class ferenda.TextReader(filename=None, encoding=None, string=None, linesep=None)
Fancy file-like-class for reading (not writing) text files by line, paragraph, page or any other user-defined unit
of text, with support for peeking ahead and looking backwards. It can read files with byte streams using dif-
ferent encodings, but converts/handles everything to real strings (unicode in python 2). Alternatively, it can be
initialized from an existing string.

Parameters

• filename (str) – The file to read

• encoding (str) – The encoding used by the file (default ascii)

142 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

• string (str) – Alternatively, a string used for initialization

• linesep (str) – The line separators used in the file/string

UNIX = '\n'
Unix line endings, for use with the linesep parameter.

DOS = '\r\n'
Dos/Windows line endings, for use with the linesep parameter.

MAC = '\r'
Old-style Mac line endings, for use with the linesep parameter.

eof()
Returns True iff current seek position is at end of file.

bof()
Returns True iff current seek position is at begining of file.

cue(string)
Set seek position at the beginning of string, starting at current seek position. Raises IOError if string not
found.

cuepast(string)
Set seek position at the beginning of string, starting at current seek position. Raises IOError if string not
found.

readto(string)
Read and return all text between current seek potition and string. Sets new seek position at the start of
string. Raises IOError if string not found.

readparagraph()
Reads and returns the next paragraph (all text up to two or more consecutive line separators).

readpage()
Reads and returns the next page (all text up to next form feed, "\f")

readchunk(delimiter)
Reads and returns the next chunk of text up to delimiter

lastread()
Returns the last chunk of data that was actually read (i.e. the peek* and prev* methods do not affect
this)

peek(size=0)
Works like read(), but does not affect current seek position.

peekline(times=1)
Works like readline(), but does not affect current seek position. If times is specified, peeks that many
lines ahead.

peekparagraph(times=1)
Works like readparagraph(), but does not affect current seek position. If times is specified, peeks
that many paragraphs ahead.

peekchunk(delimiter, times=1)
Works like readchunk(), but does not affect current seek position. If times is specified, peeks that
many chunks ahead.

prev(size=0)
Works like read(), but reads backwards from current seek position, and does not affect it.

18.1. Classes 143

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

prevline(times=1)
Works like readline(), but reads backwards from current seek position, and does not affect it. If times
is specified, reads the line that many times back.

prevparagraph(times=1)
Works like readparagraph(), but reads backwards from current seek position, and does not affect it.
If times is specified, reads the paragraph that many times back.

prevchunk(delimiter, times=1)
Works like readchunk(), but reads backwards from current seek position, and does not affect it. If
times is specified, reads the chunk that many times back.

getreader(callableObj, *args, **kwargs)
Enables you to treat the result of any single read*, peek* or prev* methods as a new TextReader.
Particularly useful to process individual pages in page-oriented documents:

filereader = TextReader("rfc822.txt")
firstpagereader = filereader.getreader(filereader.readpage)
firstpagereader is now a standalone TextReader that only
contains the first page of text from rfc822.txt
filereader.seek(0) # reset current seek position
page5reader = filereader.getreader(filereader.peekpage, times=5)
page5reader now contains the 5th page of text from rfc822.txt

getiterator(callableObj, *args, **kwargs)
Returns an iterator:

filereader = TextReader(“dashed.txt”) # dashed.txt contains paragraphs separated by “—-” for para in
filereader.getiterator(filereader.readchunk, “—-“):

print(para)

flush()
See io.IOBase.flush(). This is a no-op.

read(size=0)
See io.TextIOBase.read().

readline(size=None)
See io.TextIOBase.readline().

Note: The size parameter is not supported.

seek(offset, whence=0)
See io.TextIOBase.seek().

Note: The whence parameter is not supported.

tell()
See io.TextIOBase.tell().

write()
See io.TextIOBase.write().

Note: Always raises IOError, as TextReader is a read-only object.

144 Chapter 18. API reference

https://docs.python.org/3/library/io.html#io.IOBase.flush
https://docs.python.org/3/library/io.html#io.TextIOBase.read
https://docs.python.org/3/library/io.html#io.TextIOBase.readline
https://docs.python.org/3/library/io.html#io.TextIOBase.seek
https://docs.python.org/3/library/io.html#io.TextIOBase.tell
https://docs.python.org/3/library/io.html#io.TextIOBase.write

Ferenda Documentation, Release 0.3.1.dev1

writelines()
See io.IOBase.writelines().

Note: Always raises IOError, as TextReader is a read-only object.

next()
Backwards-compatibility alias for iterating over a file in python 2. Use getiterator() to make itera-
tion work over anything other than lines (eg paragraphs, pages, etc).

18.1.21 The PDFReader class

class ferenda.PDFReader(pages=None, filename=None, workdir=None, images=True, con-
vert_to_pdf=False, keep_xml=True, ocr_lang=None, fontspec=None,
textdecoder=None)

Parses PDF files and makes the content available as a object hierarchy. Calling the read() method returns a
ferenda.pdfreader.PDFFile object, which is a list of ferenda.pdfreader.Page objects, which
each is a list of ferenda.pdfreader.Textbox objects, which each is a list of ferenda.pdfreader.
Textelement objects.

Note: This class depends on the command line tool pdftohtml from poppler.

The class can also handle any other type of document (such as Word/OOXML/WordPerfect/RTF) that OpenOf-
fice or LibreOffice handles by first converting it to PDF using the soffice command line tool (which then
must be in your $PATH).

If the PDF contains only scanned pages (without any OCR information), the pages can be run through the
tesseract command line tool (which, again, needs to be in your $PATH). You need to provide the main
language of the document as the ocr_lang parameter, and you need to have installed the tesseract language
files for that language.

detect_footnotes = True

dims = 'bbox (?P<left>\\d+) (?P<top>\\d+) (?P<right>\\d+) (?P<bottom>\\d+)'

re_dimensions()
Scan through string looking for a match, and return a corresponding match object instance.

Return None if no position in the string matches.

ws_trans = {9: ' ', 10: ' ', 160: ' '}

tagname = 'div'

classname = 'pdfreader'

is_empty()

textboxes(gluefunc=None, pageobjects=False, keepempty=False, startpage=0, pagecount=None,
cache=True)

Return an iterator of the textboxes available.

gluefunc should be a callable that is called with (textbox, nextbox, prevbox), and returns True iff
nextbox should be appended to textbox.

If pageobjects, the iterator can return Page objects to signal that pagebreak has ocurred (these Page
objects may or may not have Textbox elements).

If keepempty, process and return textboxes that have no text content (these are filtered out by default)

18.1. Classes 145

https://docs.python.org/3/library/io.html#io.IOBase.writelines
http://poppler.freedesktop.org/

Ferenda Documentation, Release 0.3.1.dev1

If cache, store the resulting list of textboxes for each page and return it the next time.

median_box_width(threshold=0)
Returns the median box width of all pages.

string = <module 'string' from '/usr/lib/python3.5/string.py'>

class ferenda.pdfreader.Page(*args, **kwargs)
Represents a Page in a PDF file. Has width and height properties.

tagname = 'div'

classname = 'pdfpage'

margins = None

id

boundingbox(top=0, left=0, bottom=None, right=None)
A generator of ferenda.pdfreader.Textbox objects that fit into the bounding box specified by the
parameters.

crop(top=0, left=0, bottom=None, right=None)
Removes any ferenda.pdfreader.Textbox objects that does not fit within the bounding box spec-
ified by the parameters.

class ferenda.pdfreader.Textbox(*args, **kwargs)
A textbox is a amount of text on a PDF page, with top, left, width and height properties that specifies the
bounding box of the text. The fontid property specifies the id of font used (use getfont() to get a dict of all
font properties). A textbox consists of a list of Textelements which may differ in basic formatting (bold and or
italics), but otherwise all text in a Textbox has the same font and size.

tagname = 'p'

classname = 'textbox'

linespacing

as_xhtml(uri, parent_uri=None)
Converts this object to a lxml.etree object (with children)

Parameters uri (str) – If provided, gets converted to an @about attribute in the resulting
XHTML.

font

class ferenda.pdfreader.Textelement(*args, **kwargs)
Represent a single part of text where each letter has the exact same formatting. The tag property specifies
whether the text as a whole is bold ('b') , italic('i' bold + italic ('bi') or regular (None).

as_xhtml(uri, parent_uri=None)
Converts this object to a lxml.etree object (with children)

Parameters uri (str) – If provided, gets converted to an @about attribute in the resulting
XHTML.

tagname

18.1.22 The PDFAnalyzer class

class ferenda.PDFAnalyzer(pdf)
Create a analyzer for the given pdf file.

146 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

The primary purpose of an analyzer is to determine margins and other spatial metrics of a document, and identifiy
common typographic styles for default text, title and headings. This is done by calling the metrics()method.

The analysis is done in several steps. The properties of all textboxes on each page is collected in several
collections.Counter objects. These counters are then statistically analyzed in a series of functions to
yield these metrics.

If different analyzis logic, or additional metrics, are desired, this class should be inherited and some meth-
ods/properties overridden.

Parameters pdf (ferenda.PDFReader) – The pdf file to analyze.

twopage = True
Whether or not the document is expected to have different margins depending on whether it’s a even or
odd page.

style_significance_threshold = 0.005
“The amount of use (as compared to the rest of the document that a style must have to be considered
significant.

header_significance_threshold = 0.002
The maximum amount (expressed as part of the entire text amount) of text that can occur on the top of the
page for it to be considered part of the header.

footer_significance_threshold = 0.002
The maximum amount (expressed as part of the entire text amount) of text that can occur on the bottom of
the page for it to be considered part of the footer.

pagination_min_size = 6
The minimum size (in points) that a page number can be. Used to distinguish page numbers from footnote
numbers, which are typically set in miniscule sizes.

documents
Attempts to distinguish different logical document (eg parts with differing pagesizes/margins/styles etc)
within this PDF.

You should override this method if you want to provide your own document segmentation logic.

Returns Tuples (startpage, pagecount, tag) for the different identified documents

Return type list

paginate(paginatepath=None, force=False)
Attempt to identify the real page number from pagination numbers on the page

guess_pagenumber(page, probable_pagenumber=1)

guess_pagenumber_candidates(page, probable_pagenumber)

guess_pagenumber_boxes(page)
Return a suitable number of textboxes to scan for a possible page number.

guess_pagenumber_select(candidates, probable_pagenumber)

metrics(metricspath=None, plotpath=None, startpage=0, pagecount=None, force=False)
Calculate and return the metrics for this analyzer.

metrics is a set of named properties in the form of a dict. The keys of the dict can represent margins
or other measurements of the document (left/right margins, header/footer etc) or font styles used in the
document (eg. default, title, h1 – h3). Style values are in turn dicts themselves, with the keys ‘family’ and
‘size’.

Parameters

18.1. Classes 147

https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/stdtypes.html#list

Ferenda Documentation, Release 0.3.1.dev1

• metricspath (str) – The path of a JSON file used as cache for the calculated metrics

• plotpath (str) – The path to write a PNG file with histograms for different values (for
debugging).

• startpage (int) – starting page for the analysis

• startpage – number of pages to analyze (default: all available)

• force (bool) – Perform analysis even if cached JSON metrics exists.

Returns calculated metrics

Return type dict

The default implementation will try to find out values for the following metrics:

key description
leftmargin position of left margin (for odd pages if twopage = True)
rightmargin position of right margin (for odd pages if twopage = True)
leftmargin_even position of left margin for even pages
rightmargin_even position of right margin for right pages
topmargin position of header zone
bottommargin position of footer zone
default style used for default text
title style used for main document title (on front page)
h1 style used for level 1 headings
h2 style used for level 2 headings
h3 style used for level 3 headings

Subclasses might add (or remove) from the above.

textboxes(startpage, pagecount)
Generate a stream of (pagenumber, textbox) tuples consisting of all pages/textboxes from startpage to
pagecount.

count_horizontal_margins(startpage, pagecount)
Return a dict of Counter objects for all the horizontally oriented textbox properties (number of textboxes
starting/ending at different positions).

The set of counters is determined by setup_horizontal_counters.

setup_horizontal_counters()
Create initial set of horizontal counters.

count_horizontal_textbox(pagenumber, textbox, counters)
Add a single textbox to the set of horizontal counters.

count_vertical_margins(startpage, pagecount)

setup_vertical_counters()

count_vertical_textbox(pagenumber, textbox, counters)

count_styles(startpage, pagecount)

count_styles_textbox(pagenumber, textbox, counter)

analyze_vertical_margins(vcounters)

analyze_horizontal_margins(vcounters)

filterdict(counter, filter_func=None)

148 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

Ferenda Documentation, Release 0.3.1.dev1

findmargin(counter, trunc_func=<built-in function round>, quantize=False)

fontsize_key(fonttuple)

fontdict(fonttuple)

analyze_styles(styles)

drawboxes(outfilename, gluefunc=None, startpage=0, pagecount=None, counters=None, met-
rics=None)

Create a copy of the parsed PDF file, but with the textboxes created by gluefunc clearly marked, and
metrics shown on the page.

Note: This requires PyPDF2 and reportlab, which aren’t installed by default. Reportlab (3.*) only works
on py27+ and py33+

plot(filename, margincounters, stylecounters, metrics)

plot_margins(subplots, margin_counters, metrics, pagewidth, pageheight)

plot_styles(plot, stylecounter, metrics, plt)

18.1.23 The WordReader class

class ferenda.WordReader
Reads .docx and .doc-files (the latter with support from antiword) and converts them to a XML form that is
slightly easier to deal with.

log = <logging.Logger object>

read(wordfile, intermediatefp, simplify=True)
Converts the word file to a more easily parsed format.

Parameters

• wordfile – Path to original docfile

• intermediatefp – An open filehandle to write the more parseable file to

Returns filetype (either “doc” or “docx”)

Return type str

word_to_docbook(indoc, outfp)
Convert a old Word document (.doc) to a pseudo-docbook file through antiword.

word_to_ooxml(indoc, outfp, simplify)
Extracts the raw OOXML file from a modern Word document (.docx).

18.1.24 The WSGIApp class

class ferenda.WSGIApp(repos, inifile=None, **kwargs)
Implements a WSGI app.

search(environ, start_response)
WSGI method, called by the wsgi app for requests that matches searchendpoint.

api(environ, start_response)
WSGI method, called by the wsgi app for requests that matches apiendpoint.

18.1. Classes 149

http://www.winfield.demon.nl/
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

static(environ, start_response)
WSGI method, called by the wsgi app for all other requests not handled by search() or api()

stream(environ, start_response)
WSGI method, called by the wsgi app for requests that indicate the need for a streaming response.

exception_heading = 'Something is broken'

exception_description = 'Something went wrong when showing the page. Below is some troubleshooting information intended for the webmaster.'

exception(environ, start_response)

stats(resultset=())

stats_slice(data, facet, resource_graph)

query(environ)

mangle_results(res, ac_query)

mangle_result(hit, ac_query=False)

parse_parameters(querystring, idx)

18.1.25 The Resources class

class ferenda.Resources(repos, resourcedir, **kwargs)
Creates and manages various assets/resources needed for web serving.

make(css=True, js=True, img=True, xml=True, api=None)

make_css()

make_js()

make_img()

make_resources_xml(cssfiles, jsfiles)

make_api_files()

18.1.26 The CompositeRepository class

class ferenda.CompositeRepository(config=None, **kwargs)
Acts as a proxy for a list of sub-repositories.

Calls the download() method for each of the included subrepos. Parse calls each subrepos parse() method in
order until one succeeds, unless config.failfast is True. In that case any errors from the first subrepo is re-raised.

documentstore_class
alias of CompositeStore

extrabases = ()
List of mixin classes to add to each subrepo class.

supress_subrepo_logging = True

get_instance(instanceclass)

subrepos = ()
List of respository classes to use.

150 Chapter 18. API reference

Ferenda Documentation, Release 0.3.1.dev1

classmethod get_default_options()
Returns the class’ configuration default configuration properties. These can be overridden by a configution
file, or by named arguments to __init__(). See Configuration for a list of standard configuration
properties (your subclass is free to define and use additional configuration properties).

Returns default configuration properties

Return type dict

config
The LayeredConfig object that contains the current configuration for this docrepo instance. You can
read or write individual properties of this object, or replace it with a new LayeredConfig object en-
tirely.

download(basefile=None)
Downloads all documents from a remote web service.

The default generic implementation assumes that all documents are linked from a single page (which has
the url of start_url), that they all have URLs matching the document_url_regex or that the link
text is always equal to basefile (as determined by basefile_regex). If these assumptions don’t hold,
you need to override this method.

If you do override it, your download method should read and set the lastdownload parameter to either
the datetime of the last download or any other module-specific string (id number or similar).

You should also read the refresh parameter. If it is True (the default), then you should call
download_single() for every basefile you encounter, even though they may already exist in some
form on disk. download_single() will normally be using conditional GET to see if there is a newer
version available.

See Writing your own download implementation for more details.

Returns True if any document was downloaded, False otherwise.

Return type bool

parse(basefile)
Parse downloaded documents into structured XML and RDF.

It will also save the same RDF statements in a separate RDF/XML file.

You will need to provide your own parsing logic, but often it’s easier to just override parse_{metadata,
document}_from_soup (assuming your indata is in a HTML format parseable by BeautifulSoup) and let
the base class read and write the files.

If your data is not in a HTML format, or BeautifulSoup is not an appropriate parser to use, override this
method.

Parameters doc (ferenda.Document) – The document object to fill in.

get_preferred_instances(basefile)

copy_parsed(basefile, instance)

class ferenda.CompositeStore(datadir, storage_policy=’file’, compression=None,
docrepo_instances=None)

Custom store for CompositeRepository objects.

list_basefiles_for(action, basedir=None, force=True)
Get all available basefiles that can be used for the specified action.

Parameters

• action (str) – The action for which to get available basefiles (parse, relate,
generate or news)

18.1. Classes 151

https://docs.python.org/3/library/stdtypes.html#dict
https://layeredconfig.readthedocs.io/en/latest/api.html#layeredconfig.LayeredConfig
https://layeredconfig.readthedocs.io/en/latest/api.html#layeredconfig.LayeredConfig
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

• basedir (str) – The base directory in which to search for available files. If not pro-
vided, defaults to self.datadir.

Returns All available basefiles

Return type generator

18.2 Modules

18.2.1 The util module

General library of small utility functions.

class ferenda.util.gYearMonth

class ferenda.util.gYear

class ferenda.util.TopCounter(**kwds)

top()

ferenda.util.ns
A mapping of well-known prefixes and their corresponding namespaces. Includes dc, dcterms, rdfs, rdf,
skos, xsd, foaf, owl, xhv, prov and bibo.

ferenda.util.mkdir(newdir)
Like os.makedirs(), but doesn’t raise an exception if the directory already exists.

ferenda.util.ensure_dir(filename)
Given a filename (typically one that you wish to create), ensures that the directory the file is in actually exists.

ferenda.util.robust_rename(old, new)
Rename old to new no matter what (if the file exists, it’s removed, if the target dir doesn’t exist, it’s created)

ferenda.util.robust_remove(path)
Removes the path no matter what (unlike os.unlink(), does not raise an error if the file does not exist). If
the path is a directory, the entire directory is removed.

ferenda.util.name_from_fp(fp)
Returns the name of the opened file held by fp, which can be either a regular file or a BZ2File.

ferenda.util.relurl(url, starturl)
Works like os.path.relpath(), but for urls

>>> relurl("http://example.org/other/index.html", "http://example.org/main/index.
→˓html") == '../other/index.html'
True
>>> relurl("http://other.org/foo.html", "http://example.org/bar.html") == 'http://
→˓other.org/foo.html'
True

ferenda.util.numcmp(x, y)
Works like cmp in python 2, but compares two strings using a ‘natural sort’ order, ie “10” < “2”. Also handles
strings that contains a mixture of numbers and letters, ie “2” < “2 a”.

Return negative if x<y, zero if x==y, positive if x>y.

152 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.makedirs
https://docs.python.org/3/library/os.html#os.unlink
https://docs.python.org/3/library/os.path.html#os.path.relpath

Ferenda Documentation, Release 0.3.1.dev1

>>> numcmp("10", "2")
1
>>> numcmp("2", "2 a")
-1
>>> numcmp("3", "2 a")
1

ferenda.util.split_numalpha(s)
Converts a string into a list of alternating string and integers. This makes it possible to sort a list of strings
numerically even though they might not be fully convertable to integers

>>> split_numalpha('10 a §') == ['', 10, ' a §']
True
>>> split_numalpha("squared2") == ["squared2"]
True
>>> sorted(['2 §', '10 §', '1 §'], key=split_numalpha) == ['1 §', '2 §', '10 §']
True

ferenda.util.runcmd(cmdline, require_success=False, cwd=None, cmdline_encoding=None,
output_encoding=’utf-8’)

Run a shell command, wait for it to finish and return the results.

Parameters

• cmdline (str) – The full command line (will be passed through a shell)

• require_success (bool) – If the command fails (non-zero exit code), raise
ExternalCommandError

• cwd – The working directory for the process to run

Returns The returncode, all stdout output, all stderr output

Return type tuple

ferenda.util.normalize_space(string)
Normalize all whitespace in string so that only a single space between words is ever used, and that the string
neither starts with nor ends with whitespace.

>>> normalize_space(" This is a long \n string\n") == 'This is a long string'
True

ferenda.util.list_dirs(d, suffix=None, reverse=False)
A generator that works much like os.listdir(), only recursively (and only returns files, not directories).

Parameters

• d (str) – The directory to start in

• suffix (str or list) – Only return files with the given suffix

• reverse – Returns result sorted in reverse alphabetic order

• type –

Returns the full path (starting from d) of each matching file

Return type generator

ferenda.util.replace_if_different(src, dst, archivefile=None)
Like shutil.move(), except the src file isn’t moved if the dst file already exists and is identical to src. Also
doesn’t require that the directory of dst exists beforehand.

18.2. Modules 153

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/os.html#os.listdir
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/shutil.html#shutil.move

Ferenda Documentation, Release 0.3.1.dev1

Note: regardless of whether it was moved or not, src is always deleted.

Parameters

• src (str) – The source file to move

• dst (str) – The destination file

Returns True if src was copied to dst, False otherwise

Return type bool

ferenda.util.copy_if_different(src, dest)
Like shutil.copyfile(), except the src file isn’t copied if the dst file already exists and is identical to src.
Also doesn’t require that the directory of dst exists beforehand.

param src The source file to move

type src str

param dst The destination file

type dst str

returns True if src was copied to dst, False otherwise

rtype bool

class ferenda.util.OutfileIsNotNewer

ferenda.util.outfile_is_newer(infiles, outfile)
Check if a given outfile is newer than all of the given files in the infiles list.

Newer is defined as having more recent modification time. Returns True if so, a falsey value otherwise (including
if outfile doesn’t exist).

If the outfile isn’t never, the value returned will evaluate to False in a bool context, but also contain a reason
attribute containing a text description of which infiles file was never than outfile.

ferenda.util.link_or_copy(src, dst)
Create a symlink at dst pointing back to src on systems that support it. On other systems (i.e. Windows), copy
src to dst (using copy_if_different())

ferenda.util.ucfirst(string)
Returns string with first character uppercased but otherwise unchanged.

>>> ucfirst("iPhone") == 'IPhone'
True

ferenda.util.rfc_3339_timestamp(dt)
Converts a datetime object to a RFC 3339-style date

>>> rfc_3339_timestamp(datetime.datetime(2013, 7, 2, 21, 20, 25)) == '2013-07-
→˓02T21:20:25-00:00'
True

ferenda.util.parse_rfc822_date(httpdate)
Converts a RFC 822-type date string (more-or-less the same as a HTTP-date) to an UTC-localized (naive)
datetime.

>>> parse_rfc822_date("Mon, 4 Aug 1997 02:14:00 EST")
datetime.datetime(1997, 8, 4, 7, 14)

154 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/shutil.html#shutil.copyfile

Ferenda Documentation, Release 0.3.1.dev1

ferenda.util.strptime(datestr, format)
Like datetime.strptime, but guaranteed to not be affected by current system locale – all datetime parsing is done
using the C locale.

>>> strptime("Mon, 4 Aug 1997 02:14:05", "%a, %d %b %Y %H:%M:%S")
datetime.datetime(1997, 8, 4, 2, 14, 5)

ferenda.util.readfile(filename, mode=’r’, encoding=’utf-8’)
Opens filename, reads it’s contents and returns them as a string.

ferenda.util.writefile(filename, contents, encoding=’utf-8’)
Create filename and write contents to it.

ferenda.util.extract_text(html, start, end, decode_entities=True, strip_tags=True)
Given html, a string of HTML content, and two substrings (start and end) present in this string, return all text
between the substrings, optionally decoding any HTML entities and removing HTML tags.

>>> extract_text("<body><div>Hello <i>World</i>™</div></body>",
... "<div>", "</div>") == 'Hello World™'
True
>>> extract_text("<body><div>Hello <i>World</i>™</div></body>",
... "<div>", "</div>", decode_entities=False) == 'Hello World™'
True
>>> extract_text("<body><div>Hello <i>World</i>™</div></body>",
... "<div>", "</div>", strip_tags=False) == 'Hello <i>World</
→˓i>™'
True

ferenda.util.merge_dict_recursive(base, other)
Merges the other dict into the base dict. If any value in other is itself a dict and the base also has a dict for the
same key, merge these sub-dicts (and so on, recursively).

>>> base = {'a': 1, 'b': {'c': 3}}
>>> other = {'x': 4, 'b': {'y': 5}}
>>> want = {'a': 1, 'x': 4, 'b': {'c': 3, 'y': 5}}
>>> got = merge_dict_recursive(base, other)
>>> got == want
True
>>> base == want
True

ferenda.util.resource_extract(resourceloader, name, outfile, params)
Extract a resource from a configured ResourceLoader and perform variable substitutions on the contents of the
resource.

Parameters

• resourceloader – A ResourceLoader instance

• name – The named resource (eg ‘sparql/annotations.rq’)

• outfile – Path to extract the resource to

• params – A dict of parameters, to be used with regular string subtitutions in the resource
file.

ferenda.util.uri_leaf(uri)
Get the “leaf” - fragment id or last segment - of a URI. Useful e.g. for getting a term from a “namespace like”
URI.

18.2. Modules 155

Ferenda Documentation, Release 0.3.1.dev1

>>> uri_leaf("http://purl.org/dc/terms/title") == 'title'
True
>>> uri_leaf("http://www.w3.org/2004/02/skos/core#Concept") == 'Concept'
True
>>> uri_leaf("http://www.w3.org/2004/02/skos/core#") # returns None

ferenda.util.logtime(method, format=’The operation took %(elapsed).3f sec’, values={})
A context manager that uses the supplied method and format string to log the elapsed time:

with util.logtime(log.debug,
"Basefile %(basefile)s took %(elapsed).3f s",
{'basefile':'foo'}):

do_stuff_that_takes_some_time()

This results in a call like log.debug(“Basefile foo took 1.324 s”).

ferenda.util.switch_locale(newlocale=’C’, category=2)
Temporarily change process locale to the C locale, for use when eg parsing English dates on a system that may
have non-english locale.

>>> with switch_locale():
... datetime.datetime.strptime("August 2013", "%B %Y")
datetime.datetime(2013, 8, 1, 0, 0)

ferenda.util.from_roman(s)
convert Roman numeral to integer.

>>> from_roman("MCMLXXXIV")
1984

ferenda.util.to_roman(i, lower=False)

ferenda.util.is_roman(s)

ferenda.util.increment(s, amount=1)
increment a number, regardless if it’s a arabic number (int) or a roman number (str).

ferenda.util.title_sortkey(s)
Transform a document title into a key useful for sorting and partitioning documents.

>>> title_sortkey("The 'viewstate' property") == 'viewstateproperty'
True

ferenda.util.parseresults_as_xml(parseres, depth=0)

ferenda.util.json_default_date(obj)

ferenda.util.make_json_date_object_hook(*fields)

ferenda.util.location_exception(exc)
inspect the stack and return he location of the error (and if that’s in stdlib or thirdparty, the ferenda-or-project
code line that called into the source)

ferenda.util.base27encode(s)

ferenda.util.base27decode(num)

ferenda.util.robust_fetch(method, url, logger, attempts=5, sleep=1, raise_for_status=True, *args,
**kwargs)

ferenda.util.cluster(iterable, maxgap=None, maxgap_ratio=10, remove_outliers=True)

156 Chapter 18. API reference

Ferenda Documentation, Release 0.3.1.dev1

18.2.2 The citationpatterns module

General ready-made grammars for use with CitationParser. See Citation parsing for examples.

ferenda.citationpatterns.url
Matchs any URL like ‘http://example.com/ or ‘https://example.org/?key=value#fragment’ (note: only the
schemes/protocols ‘http’, ‘https’ and ‘ftp’ are supported)

ferenda.citationpatterns.eulaw
Matches EU Legislation references like ‘direktiv 2007/42/EU’.

18.2.3 The uriformats module

A small set of generic functions to convert (dicts or dict-like objects) to URIs. They are usually matched with a
corresponding citationpattern like the ones found in ferenda.citationpatterns. See Citation parsing for
examples.

ferenda.uriformats.generic(d)
Converts any dict into a URL. The domain (‘netloc’) is always example.org, and all keys/values of the dict is
turned into a querystring.

>>> generic({'foo':'1', 'bar':'2'})
"http://example.org/?foo=1&bar=2"

ferenda.uriformats.url(d)
Converts a dict with keys scheme, netloc, path (and optionally query and/or fragment) into the correspond-
ing URL.

>>> url({'scheme':'https', 'netloc':'example.org', 'path':'test'})
"https://example.org/test

ferenda.uriformats.eulaw(d)
Converts a dict with keys like LegalactType, Directive, ArticleId (produced by ferenda.
citationpatterns.eulaw) into a CELEX-based URI.

Note: This is not yet implemented.

18.2.4 The manager module

Utility functions for running various ferenda tasks from the command line, including registering classes in the con-
figuration file. If you’re using the DocumentRepository API directly in your code, you’ll probably only need
makeresources(), frontpage() and possibly setup_logger(). If you’re using the ferenda-build.
py tool, you don’t need to directly call any of these methods – ferenda-build.py calls run(), which calls
everything else, for you.

ferenda.manager.setproctitle(title)

ferenda.manager.getproctitle()

class ferenda.manager.MarshallingHandler(records)

emit(record)
Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so raises a NotImplementedError.

18.2. Modules 157

http://example.com/
https://example.org/?key=value#fragment

Ferenda Documentation, Release 0.3.1.dev1

marshal(record)

exception ferenda.manager.ParseErrorWrapper

ferenda.manager.makeresources(repos, resourcedir=’data/rsrc’, combine=False, cssfiles=[], js-
files=[], imgfiles=[], staticsite=False, legacyapi=False, site-
name=’MySite’, sitedescription=’Just another Ferenda site’,
url=’http://localhost:8000/’)

Creates the web assets/resources needed for the web app (concatenated and minified js/css files, resources.xml
used by most XSLT stylesheets, etc).

Parameters

• repos (list) – The repositories to create resources for, as instantiated and configured
docrepo objects

• combine (bool) – whether to combine and compact/minify CSS and JS files

• resourcedir (str) – where to put generated/copied resources

Returns All created/copied css, js and resources.xml files

Return type dict of lists

ferenda.manager.frontpage(repos, path=’data/index.html’, stylesheet=’xsl/frontpage.xsl’,
sitename=’MySite’, staticsite=False, develurl=None, removein-
validlinks=True)

Create a suitable frontpage.

Parameters

• repos (list) – The repositories to list on the frontpage, as instantiated and configured
docrepo objects

• path (str) – the filename to create.

ferenda.manager.runserver(repos, config=None, port=8000, documentroot=’data’, apiend-
point=’/api/’, searchendpoint=’/search/’, url=’http://localhost:8000/’,
develurl=None, indextype=’WHOOSH’, indexloca-
tion=’data/whooshindex’, legacyapi=False)

Starts up a internal webserver and runs the WSGI app (see make_wsgi_app()) using all the specified docu-
ment repositories. Runs forever (or until interrupted by keyboard).

Parameters

• repos (list) – Object instances for the repositories that should be served over HTTP

• port (int) – The port to use

• documentroot (str) – The root document, used to locate files not directly handled by
any repository

• apiendpoint (str) – The part of the URI space handled by the API functionality

• searchendpoint (str) – The part of the URI space handled by the search functionality

ferenda.manager.status(repo, samplesize=3)
Prints out some basic status information about this repository.

ferenda.manager.make_wsgi_app(inifile=None, config=None, **kwargs)
Creates a callable object that can act as a WSGI application by mod_wsgi, gunicorn, the built-in webserver, or
any other WSGI-compliant webserver.

Parameters

• inifile (str) – The full path to a ferenda.ini configuration file

158 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

• **kwargs – Configuration values for the wsgi app, overrides those in inifile.

Returns A WSGI application

Return type callable

ferenda.manager.setup_logger(level=’INFO’, filename=None, logformat=’%(asctime)s %(name)s
%(levelname)s %(message)s (%(filename)s:%(lineno)d)’,
datefmt=’%H:%M:%S’)

Sets up the logging facilities and creates the module-global log object as a root logger.

Parameters

• name (str) – The name of the logger (used in log messages)

• level (str) – ‘DEBUG’,’INFO’,’WARNING’,’ERROR’ or ‘CRITICAL’

• filename (str) – The name of the file to log to. If None, log to stdout

ferenda.manager.shutdown_logger()
Shuts down the configured logger. In particular, closes any FileHandlers, which is needed on win32 (and is a
good idea on all platforms).

ferenda.manager.run(argv, config=None, subcall=False)
Runs a particular action for either a particular class or all enabled classes.

Parameters argv – a sys.argv-style list of strings specifying the class to load, the action to run,
and additional parameters. The first parameter is either the name of the class-or-alias, or the
special value “all”, meaning all registered classes in turn. The second parameter is the action
to run, or the special value “all” to run all actions in correct order. Remaining parameters are
either configuration parameters (if prefixed with --, e.g. --loglevel=INFO, or positional
arguments to the specified action).

ferenda.manager.enable(classname)
Registers a class by creating a section for it in the configuration file (ferenda.ini). Returns the short-form
alias for the class.

>>> enable("ferenda.DocumentRepository")
'base'
>>> os.unlink("ferenda.ini")

Parameters classname (str) – The fully qualified name of the class

Returns The short-form alias for the class

Return type str

ferenda.manager.runsetup()
Runs setup() and exits with a non-zero status if setup failed in any way

Note: The ferenda-setup script that gets installed with ferenda is a tiny wrapper around this function.

ferenda.manager.setup(argv=None, force=False, verbose=False, unattended=False)
Creates a project, complete with configuration file and ferenda-build tool.

Checks to see that all required python modules and command line utilities are present. Also checks which triple
store(s) are available and selects the best one (in order of preference: Sesame, Fuseki, RDFLib+Sleepycat, RD-
FLib+SQLite), and checks which fulltextindex(es) are available and selects the best one (in order of preference:
ElasticSearch, Whoosh)

Parameters

18.2. Modules 159

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

• argv (list) – a sys.argv style command line

• force (bool) –

• verbose (bool) –

• unattended (bool) –

ferenda.manager.runbuildclient(clientname, serverhost, serverport, authkey, processes)

ferenda.manager.runbuildqueue(serverport, authkey)

18.2.5 The testutil module

unittest-based classes and accompanying functions to create some types of ferenda-specific tests easier.

class ferenda.testutil.FerendaTestCase
Convenience class with extra AssertEqual methods. Note that even though this method provides unittest.
TestCase-like assert methods, it does not derive from TestCase. When creating a test case that makes use
of these methods, you need to inherit from both TestCase and this class, ie:

class MyTestcase(unittest.TestCase, ferenda.testutil.FerendaTestCase):
def test_simple(self):

self.assertEqualXML("<foo arg1='x' arg2='y'/>",
"<foo arg2='y' arg1='x'></foo>")

assertEqualGraphs(want, got, exact=True)
Assert that two RDF graphs are identical (isomorphic).

Parameters

• want – The graph as expected, as an Graph object or the filename of a serialized graph

• got – The actual graph, as an Graph object or the filename of a serialized graph

• exact (bool) – Whether to require that the graphs are exactly alike (True) or only if all
triples in want exists in got (False)

assertAlmostEqualDatetime(datetime1, datetime2, delta=1)
Assert that two datetime objects are reasonably equal.

Parameters

• datetime1 (datetime) – The first datetime to compare

• datetime2 (datetime) – The second datetime to compare

• delta (int) – How much the datetimes are allowed to differ, in seconds.

assertEqualXML(want, got, namespace_aware=True, tidy_xhtml=False)
Assert that two xml trees are canonically identical.

Parameters

• want – The XML document as expected, as a string, byte string or ElementTree element

• got – The actual XML document, as a string, byte string or ElementTree element

assertEqualDirs(want, got, suffix=None, subset=False, filterdir=’entries’)
Assert that two directory trees contains identical files

Parameters

• want (str) – The expected directory tree

160 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

• got (str) – The actual directory tree

• suffix (str) – If given, only check files ending in suffix (otherwise check all the files

• subset (bool) – If True, require only that files in want is a subset of files in got (other-
wise require that the sets are identical)

• filterdir – If given, don’t compare the parts of the tree that starts with filterdir

class ferenda.testutil.RepoTester(methodName=’runTest’)
A unittest.TestCase-based convenience class for creating file-based integration tests for an entire docrepo. To
use this, you only need a very small amount of boilerplate code, and some files containing data to be downloaded
or parsed. The actual tests are dynamically created from these files. The boilerplate can look something like
this:

class TestRFC(RepoTester):
repoclass = RFC # the docrepo class to test
docroot = os.path.dirname(__file__)+"/files/repo/rfc"

parametrize_repotester(TestRFC)

repoclass
alias of ferenda.documentrepository.DocumentRepository

docroot = '/tmp'
The location of test files to create tests from. Must be overridden when creating a testcase class

classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.

setUp()
Hook method for setting up the test fixture before exercising it.

classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.

tearDown()
Hook method for deconstructing the test fixture after testing it.

filename_to_basefile(filename)
Converts a test filename to a basefile. Default implementation attempts to find out basefile from the re-
poclass being tested (or rather it’s documentstore), but returns a hard-coded basefile if it fails.

Parameters filename (str) – The test file

Returns Corresponding basefile

Return type str

download_test(specfile, basefile=None)
This test is run for each json file found in docroot/source.

distill_test(downloaded_file, rdf_file, docroot)
This test is run once for each basefile found in docroot/downloaded. It performs a full parse, and verifies
that the distilled RDF metadata is equal to the TTL files placed in docroot/distilled/.

parse_test(downloaded_file, xhtml_file, docroot)
This test is run once for each basefile found in docroot/downloaded. It performs a full parse, and verifies
that the resulting XHTML document is equal to the XHTML file placed in docroot/parsed/.

class ferenda.testutil.Py23DocChecker
Checker to use in conjuction with doctest.DocTestSuite.

18.2. Modules 161

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

check_output(want, got, optionflags)
Return True iff the actual output from an example (got) matches the expected output (want). These strings
are always considered to match if they are identical; but depending on what option flags the test runner
is using, several non-exact match types are also possible. See the documentation for TestRunner for more
information about option flags.

ferenda.testutil.parametrize(cls, template_method, name, params, wrapper=None)
Creates a new test method on a TestCase class, which calls a specific template method with the given parameters
(ie. a parametrized test). Given a testcase like this:

class MyTest(unittest.TestCase):
def my_general_test(self, parameter):

self.assertEqual(parameter, "hello")

and the following top-level initalization code:

parametrize(MyTest,MyTest.my_general_test, "test_one", ["hello"])
parametrize(MyTest,MyTest.my_general_test, "test_two", ["world"])

you end up with a test case class with two methods. Using e.g. unittest discover (or any other unittest-
compatible test runner), the following should be the result:

test_one (test_parametric.MyTest) ... ok
test_two (test_parametric.MyTest) ... FAIL

==
FAIL: test_two (test_parametric.MyTest)
--
Traceback (most recent call last):
File "./ferenda/testutil.py", line 365, in test_method

template_method(self, *params)
File "./test_parametric.py", line 6, in my_general_test

self.assertEqual(parameter, "hello")
AssertionError: 'world' != 'hello'
- world
+ hello

Parameters

• cls – The TestCase class to add the parametrized test to.

• template_method – The method to use for parametrization

• name (str) – The name for the new test method

• params (list) – The parameter list (Note: keyword parameters are not supported)

• wrapper – A unittest decorator like unittest.skip() or unittest.
expectedFailure().

• wrapper – callable

ferenda.testutil.file_parametrize(cls, directory, suffix, filter=None, wrapper=None)
Creates a test for each file in a given directory. Call with any class that subclasses unittest.TestCase and which
has a method called ‘‘ parametric_test‘‘, eg:

class MyTest(unittest.TestCase):
def parametric_test(self,filename):

self.assertTrue(os.path.exists(filename))

(continues on next page)

162 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/unittest.html#unittest.skip
https://docs.python.org/3/library/unittest.html#unittest.expectedFailure
https://docs.python.org/3/library/unittest.html#unittest.expectedFailure

Ferenda Documentation, Release 0.3.1.dev1

(continued from previous page)

from ferenda.testutil import file_parametrize
file_parametrize(Parse,"test/files/legaluri",".txt")

For each .txt file in the directory test/files/legaluri, a corresponding test is created, which calls
parametric_test with the full path to the .txt file as parameter.

Parameters

• cls (class) – TestCase to add the parametrized test to.

• directory (str) – The path to the files to turn into tests

• suffix – Suffix of the files that should be turned into tests (other files in the directory are
ignored)

• filter – A function to be called with the name of each found file. If this function returns
True, no test is created

• wrapper – A unittest decorator like unittest.skip() or unittest.
expectedFailure().

• wrapper – callable (decorator)

ferenda.testutil.parametrize_repotester(cls, include_failures=True)
Helper function to activate a ferenda.testutil.RepoTester based class (see the documentation for
that class).

Parameters

• cls – The RepoTester-based class to create tests on.

• include_failures (bool) – Create parse/distill tests even if the corresponding
xhtml/ttl files doesn’t exist

ferenda.testutil.testparser(testcase, parser, filename)
Helper function to test FSMParser based parsers.

18.3 Decorators

18.3.1 Decorators

Most of these decorators are intended to handle various aspects of a complete parse() implementation. Normally
you should only use the managedparsing() decorator (if you even override the basic implementation). If you cre-
ate separate actions aside from the standards (download, parse, generate et al), you should also use action()
so that manage.py will be able to call it.

ferenda.decorators.timed(f)
Automatically log a statement of how long the function call takes

ferenda.decorators.recordlastdownload(f)
Automatically stores current time in self.config.lastdownload

ferenda.decorators.parseifneeded(f)
Makes sure the parse function is only called if needed, i.e. if the outfile is nonexistent or older than the infile(s),
or if the user has specified in the config file or on the command line that it should be re-generated.

ferenda.decorators.ifneeded(action)

18.3. Decorators 163

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/unittest.html#unittest.skip
https://docs.python.org/3/library/unittest.html#unittest.expectedFailure
https://docs.python.org/3/library/unittest.html#unittest.expectedFailure
https://docs.python.org/3/library/functions.html#bool

Ferenda Documentation, Release 0.3.1.dev1

ferenda.decorators.render(f)
Handles the serialization of the Document object to XHTML+RDFa and RDF/XML files. Must be used in
conjunction with makedocument().

ferenda.decorators.handleerror(f)
Make sure any errors in ferenda.DocumentRepository.parse() are handled appropriately and do
not stop the parsing of all documents.

ferenda.decorators.makedocument(f)
Changes the signature of the parse method to expect a Document object instead of a basefile string, and creates
the object.

ferenda.decorators.managedparsing(f)
Use all standard decorators for parse() in the correct order (ifneeded(), updateentry(),
makedocument(), timed(), render())

ferenda.decorators.action(f)
Decorator that marks a class or instance method as runnable by ferenda.manager.run()

ferenda.decorators.downloadmax(f)
Makes any generator respect the downloadmax config parameter.

ferenda.decorators.newstate(state)

ferenda.decorators.updateentry(section)

18.4 Errors

18.4.1 Errors

These are the exceptions thrown by Ferenda. Any of the python built-in exceptions may be thrown as well, but
exceptions in used third-party libraries should be wrapped in one of these.

exception ferenda.errors.FerendaException
Base class for anything that can go wrong in ferenda.

exception ferenda.errors.DownloadError
Raised when a download fails in a non-recoverable way.

exception ferenda.errors.DownloadFileNotFoundError
Raised when we had indication that a particular document should exist (we have a basefile for it) but
on closer examination, it turns that it doesn’t exist after all. This is used when we can’t raise a re-
quests.exceptions.HTTPError 404 error for some reason.

exception ferenda.errors.ParseError
Raised when parse() fails in any way.

exception ferenda.errors.FSMStateError
Raised whenever the current state and the current symbol in a FSMParser configuration does not have a
defined transition.

exception ferenda.errors.DocumentRemovedError(value=”, dummyfile=None)
Raised whenever a particular document has been found to be removed – this can happen either during
download() or parse() (which may be the case if there exists a physical document, but whose contents are
essentially a placeholder saying that the document has been removed).

You can set the attribute dummyfile on this exception when raising it, preferably to the parsed_path that
would be created, if not this exception had occurred.. If present, ferenda-build.py (or rather ferenda.

164 Chapter 18. API reference

Ferenda Documentation, Release 0.3.1.dev1

manager.run()) will use this to create a dummy file at the indicated path. This prevents endless re-parsing
of expired documents.

exception ferenda.errors.DocumentSkippedError(value=”, dummyfile=None)
Raised if the document should not be processed (even though it may exist) since it’s not interesting.

exception ferenda.errors.DocumentRenamedError(value, returnvalue, oldbasefile, newbase-
file)

exception ferenda.errors.PatchError
Raised if a patch cannot be applied by patch_if_needed().

exception ferenda.errors.NoDownloadedFileError
Raised on an attempt to parse a basefile for which there doesn’t exist a downloaded file.

exception ferenda.errors.InvalidTree
Raised when the parsed XHTML tree fails internal validation.

exception ferenda.errors.AttachmentNameError
Raised whenever an invalid attachment name is used with any method of DocumentStore.

exception ferenda.errors.AttachmentPolicyError
Raised on any attempt to store an attachment using DocumentStore when storage_policy is not set to
dir.

exception ferenda.errors.ArchivingError
Raised whenever an attempt to archive a document version using archive() fails (for example, because the
archive version already exists).

exception ferenda.errors.ValidationError
Raised whenever a created document doesn’t validate using the appropriate schema.

exception ferenda.errors.TransformError
Raised whenever a XSLT transformation fails for any reason.

exception ferenda.errors.ExternalCommandError
Raised whenever any invocation of an external commmand fails for any reason.

exception ferenda.errors.ExternalCommandNotFound
Raised whenever any invocation of an external commmand fails

exception ferenda.errors.ConfigurationError
Raised when a configuration file cannot be found in it’s expected location or when it cannot be used due to
corruption, file permissions or other reasons

exception ferenda.errors.TriplestoreError
Raised whenever communications with the triple store fails, for whatever reason.

exception ferenda.errors.SparqlError
Raised whenever a SPARQL query fails. The Exception should contain whatever error message that the Triple
store returned, so the exact formatting may be dependent on which store is used.

exception ferenda.errors.IndexingError
Raised whenever an attempt to put text into the fulltext index fails.

exception ferenda.errors.SearchingError
Raised whenever an attempt to do a full-text search fails.

exception ferenda.errors.SchemaConflictError
Raised whenever a fulltext index is opened with repo arguments that result in a different schema than what’s
currently in use. Workaround this by removing the fulltext index and recreating.

18.4. Errors 165

Ferenda Documentation, Release 0.3.1.dev1

exception ferenda.errors.SchemaMappingError
Raised whenever a given field in a schema cannot be mapped to or from the underlying native field object in an
actual fulltextindex store.

exception ferenda.errors.MaxDownloadsReached
Raised whenever a recursive download operation has reached a globally set maximum number of requests.

exception ferenda.errors.ResourceNotFound
Raised when ResourceLoader method is called with the name of a non-existing resource.

exception ferenda.errors.PDFFileIsEmpty
Raised when convert tries to parse the textual content of a PDF, but finds that it has no text information
(maybe because it only contains scanned images).

exception ferenda.errors.PDFDecodeError
Raised when a BaseTextDecoder or subclass encounters a problem decoding a non-standard encoding

exception ferenda.errors.RequestHandlerError
Raised when RequestHandler attempts to handle an incoming request that it thinks it can support, but fails.

18.5 Document repositories

18.5.1 ferenda.sources.general.Keyword – generate documents for keywords
used by document in other docrepos

class ferenda.sources.general.Keyword(config=None, **kwargs)
Implements support for ‘keyword hubs’, conceptual resources which themselves aren’t related to any document,
but to which other documents are related. As an example, if a docrepo has documents that each contains a set of
keywords, and the docrepo parse implementation extracts these keywords as dcterms:subject resources,
this docrepo creates a document resource for each of those keywords. The main content for the keyword may
come from the MediaWiki docrepo, and all other documents in any of the repos that refer to this concept
resource are automatically listed.

18.5.2 ferenda.sources.general.MediaWiki – pull in commentary on docu-
ments and keywords from a MediaWiki instance

class ferenda.sources.general.MediaWiki(config=None, keywordrepo=None, **kwargs)
Downloads content from a Mediawiki system and converts it to annotations on other documents.

For efficient downloads, this docrepo requires that there exists a XML dump (created by dumpBackup.php) of
the mediawiki contents that can be fetched over HTTP/HTTPS. Configure the location of this dump using the
mediawikiexport parameter:

[mediawiki]
class = ferenda.sources.general.MediaWiki
mediawikiexport = http://localhost/wiki/allpages-dump.xml

Note: This docrepo relies on the smc.mw module, which doesn’t work on python 2.6, only 2.7 and newer.

166 Chapter 18. API reference

http://www.mediawiki.org/wiki/Manual:DumpBackup.php

Ferenda Documentation, Release 0.3.1.dev1

18.5.3 ferenda.sources.general.Sitenews – Generate a set of news docu-
ments from a single text file

class ferenda.sources.general.Sitenews(config=None, **kwargs)
Generates a set of news documents from a single text file.

This is a simple way of creating a feed of news about the site itself, with permalinks for individual posts and a
Atom feed for subscribing in a feed reader.

The text file is loaded by ferenda.ResourceLoader, so it can be placed in any resource directory for any repo
used. By default, the resource name is “static/sitenews.txt” but this can be changed with config.newsfile

The text file should be structured with each post/entry having a header line, followed by a empty line, then the
body of the post. The body ends when a new header line (or EOF) is encountered. The header line should be
formatted like <ISO 8859-1 datetime> <Entry title>.

The body should be a regular HTML fragment.

18.5.4 ferenda.sources.general.Skeleton – generate skeleton documents for
references from other documents

class ferenda.sources.general.Skeleton(config=None, **kwargs)
Utility docrepo to fetch all RDF data from a triplestore (either our triple store, or a remote one, fetched through
the combined ferenda atom feed), find out those resources that are referred to but not present in the data (usually
older documents that are not available in electronic form), and create “skeleton entries” for those resources.

18.5.5 ferenda.sources.general.Static – generate documents from your own
.rst files

class ferenda.sources.general.Static(config=None, **kwargs)
Generates documents from your own .rst files

The primary purpose of this docrepo is to provide a small set of static pages for a complete ferenda-based web
site, like “About us”, “Contact information”, “Terms of service” or whatever else you need. The download
step of this docrepo does not do anything, and it’s parse step reads ReStructuredText (.rst) files from a local
directory and converts them into XHTML+RDFa. From that point on, it works just like any other docrepo.

After enabling this, you should set the configuration parameter staticdir to the path of a directory where
you keep your .rst files:

[static]
class = ferenda.sources.general.Static
staticdir = /var/www/mysite/static/rst

Note: If this configuration parameter is not set, this docrepo will use a small set of generic static pages, stored
under ferenda/res/static-pages in the distribution. To get started, you can just copy this directory
and set staticdir to point at your copy.

If a rst file has a special :footer-order: directive directly underneath the main title, it will result in a link in the
site footer. The link text will be the title of the document, i.e. the first header in the .rst file. The order of
those links is controlled by the value of :footer-order:, which should be an integer.

18.5. Document repositories 167

Ferenda Documentation, Release 0.3.1.dev1

18.5.6 ferenda.sources.tech – repositories for technical standards

W3Standards

class ferenda.sources.tech.W3Standards(config=None, **kwargs)

RFC

class ferenda.sources.tech.RFC(config=None, **kwargs)

18.5.7 ferenda.sources.legal.eu – repositories for EU law

EurlexTreaties

EurlexCaselaw

18.5.8 ferenda.sources.legal.se – repositories for Swedish law

ARN

class ferenda.sources.legal.se.ARN(config=None, **kwargs)
Hanterar referat från Allmänna Reklamationsnämnden, www.arn.se.

Modulen hanterar hämtande av referat från ARNs webbplats, omvandlande av dessa till XHTML1.1+RDFa,
samt transformering till browserfärdig HTML5.

Direktiv

class ferenda.sources.legal.se.Direktiv(config=None, **kwargs)
A composite repository containing DirTrips, DirAsp and DirRegeringen.

direktiv.DirTrips

class ferenda.sources.legal.se.direktiv.DirTrips(config=None, **kwargs)
Downloads Direktiv in plain text format from http://rkrattsbaser.gov.se/dir/

direktiv.DirAsp

class ferenda.sources.legal.se.direktiv.DirAsp(config=None, **kwargs)
Downloads Direktiv in PDF format from http://rkrattsdb.gov.se/kompdf/

direktiv.DirRegeringen

class ferenda.sources.legal.se.direktiv.DirRegeringen(config=None, **kwargs)
Downloads Direktiv in PDF format from http://www.regeringen.se/

168 Chapter 18. API reference

http://rkrattsbaser.gov.se/dir/
http://rkrattsdb.gov.se/kompdf/
http://www.regeringen.se/

Ferenda Documentation, Release 0.3.1.dev1

Ds

class ferenda.sources.legal.se.Ds(config=None, **kwargs)

DV

class ferenda.sources.legal.se.DV(config=None, **kwargs)
Handles legal cases, in report form, from primarily final instance courts.

Cases are fetched from Domstolsverkets FTP server for “Vägledande avgöranden”, and are converted from
doc/docx format.

JK

class ferenda.sources.legal.se.JK(config=None, **kwargs)

JO

class ferenda.sources.legal.se.JO(config=None, **kwargs)
Hanterar beslut från Riksdagens Ombudsmän, www.jo.se

Modulen hanterar hämtande av beslut från JOs webbplats i PDF samt omvandlande av dessa till XHTML.

Kommitte

class ferenda.sources.legal.se.Kommitte(config=None, **kwargs)

MyndFskr

class ferenda.sources.legal.se.myndfskr.MyndFskrBase(config=None, **kwargs)
A abstract base class for fetching and parsing regulations from various swedish government agencies. These
documents often have a similar structure both linguistically and graphically (most of the time they are in similar
PDF documents), enabling us to parse them in a generalized way. (Downloading them often requires special-
case code, though.)

myndfskr.AFS

class ferenda.sources.legal.se.myndfskr.DVFS(config=None, **kwargs)

myndfskr.BOLFS

class ferenda.sources.legal.se.myndfskr.BOLFS(config=None, **kwargs)

myndfskr.DIFS

class ferenda.sources.legal.se.myndfskr.DIFS(config=None, **kwargs)

18.5. Document repositories 169

Ferenda Documentation, Release 0.3.1.dev1

myndfskr.DVFS

class ferenda.sources.legal.se.myndfskr.DVFS(config=None, **kwargs)

myndfskr.EIFS

class ferenda.sources.legal.se.myndfskr.EIFS(config=None, **kwargs)

myndfskr.ELSAKFS

class ferenda.sources.legal.se.myndfskr.ELSAKFS(config=None, **kwargs)

myndfskr.FFFS

class ferenda.sources.legal.se.myndfskr.FFFS(config=None, **kwargs)

myndfskr.FFS

class ferenda.sources.legal.se.myndfskr.FFS(config=None, **kwargs)

myndfskr.FoHMFS

myndfskr.KFMFS

myndfskr.KOVFS

class ferenda.sources.legal.se.myndfskr.KOVFS(config=None, **kwargs)

myndfskr.KVFS

class ferenda.sources.legal.se.myndfskr.KVFS(config=None, **kwargs)

myndfskr.LMFS

class ferenda.sources.legal.se.myndfskr.LMFS(config=None, **kwargs)

myndfskr.LIFS

class ferenda.sources.legal.se.myndfskr.LIFS(config=None, **kwargs)

myndfskr.LVFS

class ferenda.sources.legal.se.myndfskr.LVFS(config=None, **kwargs)

170 Chapter 18. API reference

Ferenda Documentation, Release 0.3.1.dev1

myndfskr.MIGRFS

class ferenda.sources.legal.se.myndfskr.MIGRFS(config=None, **kwargs)

myndfskr.MPRTFS

class ferenda.sources.legal.se.myndfskr.MPRTFS(config=None, **kwargs)

myndfskr.MSBFS

class ferenda.sources.legal.se.myndfskr.MSBFS(config=None, **kwargs)

myndfskr.MYHFS

class ferenda.sources.legal.se.myndfskr.MYHFS(config=None, **kwargs)

myndfskr.NFS

class ferenda.sources.legal.se.myndfskr.NFS(config=None, **kwargs)

myndfskr.RNFS

myndfskr.RAFS

class ferenda.sources.legal.se.myndfskr.RAFS(config=None, **kwargs)

myndfskr.RGKFS

class ferenda.sources.legal.se.myndfskr.RGKFS(config=None, **kwargs)

myndfskr.SJVFS

class ferenda.sources.legal.se.myndfskr.SJVFS(config=None, **kwargs)

myndfskr.SKVFS

class ferenda.sources.legal.se.myndfskr.SKVFS(config=None, **kwargs)

myndfskr.SOSFS

class ferenda.sources.legal.se.myndfskr.SOSFS(config=None, **kwargs)

18.5. Document repositories 171

Ferenda Documentation, Release 0.3.1.dev1

myndfskr.STFS

class ferenda.sources.legal.se.myndfskr.STFS(config=None, **kwargs)

myndfskr.SvKFS

class ferenda.sources.legal.se.myndfskr.SvKFS(config=None, **kwargs)

Propositioner

class ferenda.sources.legal.se.Propositioner(config=None, **kwargs)

propositioner.PropRegeringen

class ferenda.sources.legal.se.propositioner.PropRegeringen(config=None,
**kwargs)

propositioner.PropTrips

class ferenda.sources.legal.se.propositioner.PropTrips(config=None, **kwargs)

propositioner.PropRiksdagen

class ferenda.sources.legal.se.propositioner.PropRiksdagen(config=None,
**kwargs)

SFS

class ferenda.sources.legal.se.SFS(config=None, **kwargs)
Handles consolidated (codified) versions of statutes from SFS (Svensk författningssamling).

SOU

class ferenda.sources.legal.se.SOU(config=None, **kwargs)

propositioner.SOURegeringen

class ferenda.sources.legal.se.sou.SOURegeringen(config=None, **kwargs)

propositioner.SOUKB

class ferenda.sources.legal.se.sou.SOUKB(config=None, **kwargs)

172 Chapter 18. API reference

Ferenda Documentation, Release 0.3.1.dev1

18.5.9 The Devel class

class ferenda.Devel(config=None, **kwargs)
Collection of utility commands for developing docrepos.

This module acts as a docrepo (and as such is easily callable from ferenda-manager.py), but instead
of download, parse, generate et al, contains various tool commands that is useful for developing and
debugging your own docrepo classes.

Use it by first enabling it:

./ferenda-build.py ferenda.Devel enable

And then run individual tools like:

./ferenda-build.py devel dumprdf path/to/xhtml/rdfa.xhtml

alias = 'devel'

dumprdf(filename, format=’turtle’)
Extract all RDF data from a parsed file and dump it to stdout.

Parameters

• filename (str) – Full path of the parsed XHTML+RDFa file.

• format (str) – The serialization format for RDF data (same as for rdflib.graph.
Graph.serialize())

Example:

./ferenda-build.py devel dumprdf path/to/xhtml/rdfa.xhtml nt

dumpstore(format=’turtle’)
Extract all RDF data from the system triplestore and dump it to stdout using the specified format.

Parameters format (str) – The serialization format for RDF data (same as for ferenda.
TripleStore.get_serialized()).

Example:

./ferenda-build.py devel dumpstore nt > alltriples.nt

csvinventory(alias, predicates=None)
Create an inventory of documents, as a CSV file.

Only documents that have been parsed and yielded some minimum amount of RDF metadata will be
included.

Parameters alias (str) – Docrepo alias

mkpatch(alias, basefile, description, patchedtext=None)
Create a patch file from downloaded or intermediate files. Before running this tool, you should hand-edit
the intermediate file. If your docrepo doesn’t use intermediate files, you should hand-edit the downloaded
file instead. The tool will first stash away the intermediate (or downloaded) file, then re-run parse() (or
download_single()) in order to get a new intermediate (or downloaded) file. It will then calculate the
diff between these two versions and save it as a patch file in it’s proper place (as determined by config.
patchdir), where it will be picked up automatically by patch_if_needed().

Parameters

• alias (str) – Docrepo alias

18.5. Document repositories 173

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph.serialize
https://rdflib.readthedocs.io/en/latest/apidocs/rdflib.html#rdflib.graph.Graph.serialize
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

• basefile (str) – The basefile for the document to patch

Example:

./ferenda-build.py devel mkpatch myrepo basefile1 "Removed sensitive personal
→˓information"

parsestring(string, citationpattern, uriformatter=None)
Parse a string using a named citationpattern and print parse tree and optionally formatted uri(s) on stdout.

Parameters

• string (str) – The text to parse

• citationpattern (str) – The fully qualified name of a citationpattern

• uriformatter (str) – The fully qualified name of a uriformatter

Note: This is not implemented yet

Example:

./ferenda-build.py devel parsestring \
"According to direktiv 2007/42/EU, ..." \
ferenda.citationpatterns.eulaw

fsmparse(functionname, source)
Parse a list of text chunks using a named fsm parser and output the parse tree and final result to stdout.

Parameters

• functionname (str) – A function that returns a configured FSMParser

• source (str) – A file containing the text chunks, separated by double newlines

queryindex(querystring)
Query the system fulltext index and return the IDs/URIs for matching documents.

Parameters querystring (str) – The query

construct(template, uri, format=’turtle’)
Run the specified SPARQL CONSTRUCT query.

select(template, uri, format=’json’)
Run the specified SPARQL SELECT query.

destroyindex()
Clear all data in the fulltext search index.

clearstore()
Clear all data in the current triplestore.

wsgi(path=’/’)
Runs WSGI calls in-process.

samplerepo(alias, sourcedir, sourcerepo=None, destrepo=None, samplesize=None)
Copy a random selection of documents from an external docrepo to the current datadir.

copyrepos(sourcedir, basefilelist)
Copy some specified documents to the current datadir.

The documents are specified in BASEFILELIST, and copied from the external directory SOURCEDIR.

174 Chapter 18. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Ferenda Documentation, Release 0.3.1.dev1

To be used with the output of analyze-error-log.py, eg $../tools/analyze-error-log.py data/logs/20160522-
120204.log –listerrors > errors.txt $./ferenda-build.py devel copyrepos /path/to/big/external/datadir er-
rors.txt

samplerepos(sourcedir)
Copy a random selection of external documents to the current datadir - for all docrepos.

statusreport(alias=None)
Generate report on which files parse()d OK, with errors, or failed.

Creates a servable HTML file containing information about how the last parse went for each doc in the
given repo (or all repos if none given).

documentstore_class
alias of DummyStore

downloaded_suffix = '.html'

storage_policy = 'file'

ns = {}

resourceloader = <ferenda.resourceloader.ResourceLoader object>

classmethod get_default_options()

download()

parse(basefile)

relate(basefile)

generate(basefile)

toc(otherrepos)

news(otherrepos)

tabs()

footer()

facets()

basefile_from_uri(uri)

classmethod setup(action, config, *args, **kwargs)

classmethod teardown(action, config, *args, **kwargs)

18.6 Changes

18.6.1 0.3.0 (released 2015-02-18)

This release adds support for processing things in parallel, both by using multiple processes on a single machine, and
also by running “build clients” on any number of machines, which run jobs managed by a central queue.

Parsing of PDF files has been improved by the PDFReader and PDFAnalyzer (new) classes. See PDF documents.

In addition, a lot of the included repositorys have been overhauled. The general repos MediaWiki and Keyword
should be usable for most projects by creating a subclass and configuring it.

18.6. Changes 175

Ferenda Documentation, Release 0.3.1.dev1

Backwards-incompatible changes:

• DocumentRepository and all derived classes now takes an optional first config argument. If present, this should
be a LayeredConfig object that contains the repo configuration. If not provided, a blank LayeredConfig object
is created. All other optional keyword arguments are then added to the config object. If you have overridden
__init__ for your docrepo, you’ll need to make sure to handle this first argument.

• The Newscriteria class has been removed, and DocumentRepository.news_criteria with it. The Facet framework
is now used to define news feeds (as well as TOC pages, the ReST API and fulltext indexing)

• The PDFReader constructor now takes, as first argument, a list of pdfreader.Page objects. Normally, a client
won’t have these but must instead provide a filename of a PDF file through the filename argument (which used
to be the first argument, but must now be specified as a named argument).

• the getfont() method of pdfreader.Textbox objects used to return a straight dict of strings, but has now
been replaced with a font property that is now a LayeredConfig object with proper typing. Code like
“int(textbox.getfont()[‘size’])” should now be written like “textbox.font.size”.

New features:

• The default serialization of Element objects to XHTML now inserts appropriate dcterms:isPartOf statements
when one element with a URI is contained within another element with another URI. Custom element classes
can change this by changing the partrelation property of the included document.

• Serialization of Element documents to XHTML now omits namespaces defined in self.namespaces, but which
never actually occur in the data.

• CitationParser.parse_string and .parse_recursive now has an optional predicate argument that determines the
RDF predicate between the refering and the referred resources (by default, this is dcterms:references)

• manager (and by extension ./ferenda-build.py) has new commands that allows processing jobs in parallell (see
Advanced > Parallel processing)

• The ferenda.sources.general.wiki can now transform mediawiki markup to Element objects.

• The ferenda.sources.general.keyword can be used to build keyboard hubs from all concepts that your documents
point to through a dcterms:subject property (as well as things in a wiki docrepo, and configurable other sources).

• The ferenda.sources.legal.se docrepos have been updated generally and are now close to being able to replicate
the function set of https://lagen.nu/ (which was the main motivation with this codebase all along).

• ferenda.testutil.assertEqualXML now has a tidy_xhtml argument which runs the XML documents to be com-
pared through HTML tidy (in XML mode) in order to produce easier-to-read diffs.

• Transformer now outputs the equivalent xsltproc command if the environment variable FER-
ENDA_TRANSFORMDEBUG is set.

• The relate() action now uses dependency management to avoid costly re-indexing if no changes have been made
to a document.

• TOC and newsfeed generation now uses dependency management to avoid re-generating if no changes in the
underlying data has occurred.

• Documentation in general has been improved (readers, testing).

Infrastructural changes:

• Ferenda now uses the CI service Appveyor to automatically run the entire test suite under Windows on every
commit.

176 Chapter 18. API reference

https://lagen.nu/

Ferenda Documentation, Release 0.3.1.dev1

• LayeredConfig is now a separate package and not included with Ferenda. It has been generalized and can take
any number of configuration sources (in the form of object instances) as initialization arguments. Classes that
provide configuration sources from code defaults, INI files, command line arguments, environment variables
and more are included. It also has two new class methods, .set and .get.

18.6.2 0.2.0 (released 2014-07-23)

This release adds a REST-based HTTP API and includes a lot of infrastructure to support repo-defined querying and
aggregation of arbitrary document properties. This also led to a generalization of the TocCriteria class and associated
methods, which are now replaced by the Facet class.

The REST API should be considered an alpha version and is definitly not stable.

Backwards-incompatible changes:

• The class TocCriteria and the DocumentRepository methods toc_predicates, toc_criteria et al have been removed
and replaced with the Facet class and similar methods.

• ferenda.sources.legal.se.direktiv.DirPolopoly and ferenda.sources.legal.se.propositioner.PropPolo has been re-
named to . . . DirRegeringen and . . . PropRegeringen, respectively.

New features:

• A REST API enables clients to do faceted querying (ie document whose properties have specified values),
full-text search or combinations.

• Several popular RDF ontologies are included and exposed using the REST API. A docrepo can include custom
RDF ontologies that are used in the same way. All ontologies used by a docrepo is available as a RDFLib graph
from the .ontologies property

• Docrepos can include extra/common data that describes things which your documents refer to, like companies,
publishing entities, print series and abstract things like the topic/keyword of a document. This information is
provided in the form of a RDF graph, which is also exposed using the REST API. All common data defined for
a docrepo is available as the .commondata property.

• New method DocumentRepository.lookup_resource lookup resource URIs from the common data using
foaf:name labels (or any other RDF predicate that you might want to use)

• New class Facet and new methods DocumentRepository.facets, .faceted_data, facet_query and facet_seltct to go
with that class. These replace the TocCriteria class and the methods DocumentRepository.toc_select, .toc_query,
.toc_criteria and .toc_predicates.

• The WSGI app now provides content negotiation using file extensions as well as a the HTTP Accept header,
ie. requesting “http://localhost:8000/res/base/123.ttl” gives the same result as requesting the resource “http:
//localhost:8000/res/base/123” using the “Accept: text/turtle” header.

• New exceptions ferenda.errors.SchemaConflictError and .SchemaMappingError.

• The FulltextIndex class now creates a schema in the underlying fulltext enginge based upon the used docrepos,
and the facets that those repos define. The FulltextIndex.update method now takes arbitrary arguments that are
stored as separate fields in the fulltext index. Similarly, the FulltextIndex.query method now takes arbitrary
arguments that are used to limit the search to only those documents whose properties match the arguments.

• ferenda.Devel has a new ´destroyindex’ action which completely removes the fulltext index, which might be
needed whenever its schema changes. If you add any new facets, you’ll need to run “./ferenda-build.py devel
destroyindex” followed by “./ferenda-build.py all relate –all –force”

18.6. Changes 177

http://localhost:8000/res/base/123.ttl
http://localhost:8000/res/base/123
http://localhost:8000/res/base/123

Ferenda Documentation, Release 0.3.1.dev1

• The docrepos ferenda.sources.tech.RFC and W3Standards have been updated with their own ontologies and
commondata. The result of parse now creates better RDF, in particular things like dcterms:creator and dc-
terms:subject not point to URIs (defined in commondata) instead of plain string literals.

Infrastructural changes:

• cssmin is no longer bundled within ferenda. Instead it’s marked as a dependency so that pip/easy_install auto-
matically downloads it from pypi.

• The prefix for DCMI Metadata Terms have been changed from “dct” to “dcterms” in all code and documentation.

• testutil now has a Py23DocChecker that can be used with doctest.DocTestSuite() to enable single-source doctests
that work with both python 2 and 3.

• New method ferenda.util.json_default_date, usable as the default argument of json.dump to serialize datetime
object into JSON strings.

18.6.3 0.1.7 (released 2014-04-22)

This release mainly updates the swedish legal sources, which now does a decent job of downloading and parsing a
variety of legal information. During the course of that work, a number of changes needed to be made to the core of
ferenda. The release is still a part of the 0.1 series because the REST API isn’t done yet (once it’s in, that will be
release 0.2)

Backwards-incompatible changes:

• CompositeRepository.parse now raises ParseError if no subrepository is able to parse the given basefile.

New features:

• ferenda.CompositeRepository.parse no longer requires that all subrepos have storage_policy == “dir”.

• Setting ferenda.DocumentStore.config now updates the associated DocumentStore object with the config.datadir
parameter

• New method ferenda.DocumentRepository.construct_sparql_query() allows for more complex overrides than
just setting the sparql_annotations class attribute.

• New method DocumentRepository.download_is_different() is used to control whether a newly downloaded re-
source is semantically different from a previously downloaded resource (to avoid having each ASP.Net VIEW-
STATE change result in an archived document).

• New method DocumentRepository.parseneeded(): returns True iff parsing of the document is needed (logic
moved from ferenda.decorators.parseifneeded)

• New class variable ferenda.DocumentRepository.required_predicates: Controls which predicates that is ex-
pected to be in the output data from .parse()

• The method ferenda.DocumentRepository.download_if_needed() now sets both the If-None-match and If-
modified-since HTTP headers.

• The method ferenda.DocumentRepository.render_xhtml() now creates RDFa 1.1

• New ‘compress’ parameter (Can either be empty or “bz2”) controls whether intermediate files are compressed
to save space.

• The method ferenda.DocumentStore.path() now takes an extra storage_policy parameter.

178 Chapter 18. API reference

Ferenda Documentation, Release 0.3.1.dev1

• The class ferenda.DocumentStore now stores multiple basefiles in a single directory even when storage_policy
== “dir” for all methods that cannot handle attachments (like distilled_path, documententry_path etc)

• New methods ferenda.DocumentStore.open_intermediate(), .serialized_path() and open_serialized()

• The decorator @ferenda.decorators.render (by default called when calling DocumentRepository.parse()) now
serialize the entire document to JSON, which later can be loaded to recreate the entire document object tree.
Controlled by config parameter serializejson.

• The decorator @ferenda.decorators.render now validates that required triples (as determined by .re-
quired_predicates) are present in the output.

• New decorator @ferenda.decorators.newstate, used in ferenda.FSMParser

• The docrepo ferenda.Devel now has a new csvinventory action

• The functions ferenda.Elements.serialize() and .deserialize() now takes a format parameter, which can be either
“xml” (default) or “json”. The “json” format allows for full roundtripping of all documents.

• New exception ferenda.errors.NoDownloadedFileError.

• The class ferenda.PDFReader now handles any word processing format that OpenOffice/LibreOffice can handle,
by first using soffice to convert it to a PDF. It also handles PDFs that consists entirely of scanned pages with-
out text information, by first running the images through the tesseract OCR engine. Finally, a new keep_xml
parameter allows for either removing the intermediate XML files or compressing them using bz2 to save space.

• New method ferenda.PDFReader.is_empty()

• New method ferenda.PDFReader.textboxes() iterates through all textboxes on all pages. The user can provide a
glue function to automatically concatenate textboxes that should be considered part of the same paragraph (or
other meaningful unit of text).

• New debug method ferenda.PDFReader.drawboxes() can use the same glue function, and creates a new pdf with
all the resulting textboxes marked up. (Requires PyPDF2 and reportlab, which makes this particular feature
Python 2-only).

• ferenda.PDFReader.Textbox objects can now be added to each other to form larger Textbox objects.

• ferenda.Transformer now optionally logs the equivalent xsltproc command line when transforming using XSLT.

• new method ferenda.TripleStore.update(), performs SPARQL UPDATE/DELETE/DROP/CLEAR queries.

• ferenda.util has new gYearMonth and gYear classes that subclass datetime.date, but are useful when handling
RDF literals that should have the datatype xsd:gYearMonth (or xsd:gYear)

18.6.4 0.1.6.1 (released 2013-11-13)

This hotfix release corrected an error in setup.py that prevented installs when using python 3.

18.6.5 0.1.6 (released 2013-11-13)

This release mainly contains bug fixes and development infrastructure changes. 95 % of the main code base is covered
through the unit test suite, and the examples featured in the documentation is now automatically tested as well. When-
ever discrepancies between the map (documentation) and reality (code) has been found, reality has been adjusted to
be in accordance with the map.

The default HTML5 theme has also been updated, and should scale nicely from screen widths ranging from mobile
phones in portrait mode to wide-screen desktops. The various bundled css and js files has been upgraded to their most
recent versions.

18.6. Changes 179

Ferenda Documentation, Release 0.3.1.dev1

Backwards-incompatible changes:

• The DocumentStore.open_generated method was removed as noone was using it.

• The (non-documented) modules legalref and legaluri, which were specific to swedish legal references, have been
moved into the ferenda.sources.legal.se namespace

• The (non-documented) feature where CSS files specified in the configuration could be in SCSS format, and
automatically compiled/transformed, has been removed, since the library used (pyScss) currently has problems
on the Python 3 platform.

New features:

• The ferenda.Devel.mkpatch() command now actually works.

• The republishsource configuration parameter is now available, and controls whether your Atom feeds link to the
original document file as it was fetched from the source, or to the parsed version. See Configuration.

• The entire RDF dataset for a particular docrepo is now available through the ReST API in various formats using
the same content negotiation mechanisms as the documents themselves. See The WSGI app.

• ferenda-setup now auto-configures indextype (and checks whether ElasticSearch is available, before falling
back to Whoosh) in addition to storetype.

18.6.6 0.1.5 (released 2013-09-29)

Documentation, particularly code examples, has been updated to better fit reality. They have also been added to the
test suite, so they’re almost guaranteed to be updated when the API changes.

Backwards-incompatible changes

• Transformation of XHTML1.1+RDFa files to HTML5 is now done using the new Transformer class, instead of
the DocumentRepository.transform_to_html method, which has been removed

• DocumentRepository.list_basefiles_for (which was a shortcut for calling list_basefiles_for on the docrepos’
store object) has been removed. Typical change needed:

- for basefile in self.list_basefiles_for("parse"):
+ for basefile in self.store.list_basefiles_for("parse"):

New features:

• New ferenda.Transformer class (see above)

• A new decorator, ferenda.decorators.downloadmax, can be used to limit the maximum number of documents
that a docrepo will download. It looks for eitther the “FERENDA_DOWNLOADMAX” environment variable
or the downloadmax configuration parameteter. This is primarily useful for testing and trying out new docrepos.

• DocumentRepository.render_xhtml will now include RDFa statements for all (non-BNode) subjects in doc.meta,
not just the doc.uri subject. This makes it possible to state that a document is written by some person or published
by some entity, and then include metadata on that person/entity. It also makes it possible to describe documents
related to the main document, using the information gleaned from the main document

• DocumentStore now has a intermediate_path method – previously some derived subclasses implemented their
own, but now it’s part of the base class.

180 Chapter 18. API reference

Ferenda Documentation, Release 0.3.1.dev1

• ferenda.errors.DocumentRemovedError now has a dummyfile attribute, which is used by ferenda.manager.run
to avoid endless re-parsing of downloaded files that do not contain an actual document.

• A new shim module, ferenda.compat (modelled after six.moves), simplified imports of modules that may or may
not be present in the stdlib depending on python version. So far, this includes OrderedDict, unittest and mock.

Infrastructural changes:

• Most of the bundled document repository classes in ferenda.sources has been overhauled and adapted to the
changes that has occurred to the API since the old days.

• Continous integration and coverage is now set up with Travis-CI (https://travis-ci.org/staffanm/ferenda/) and
Coveralls (https://coveralls.io/r/staffanm/ferenda)

18.6.7 0.1.4 (released 2013-08-26)

• ElasticSearch is now supported as an alternate backend to Whoosh for fulltext indexing and searching.

• Documentation, particularly “Creating your own document repositories” have been substantially overhauled,
and in the process various bugs that prevented the usage of custom SPARQL queries and XSLT transforms were
fixed.

• The example RFC docrepo parser has been improved.

18.6.8 0.1.3 (released 2013-08-11)

• Search functionality when running under WSGI is now implemented. Still a bit basic and not really customizable
(everything is done by manager._wsgi_search), but seems to actually work.

• New docrepo: ferenda.sources.general.Static, for publishing static content (such as “About”, “Contact”, “Legal
info”) that goes into the site footer.

• The FulltextIndex class have been split up similarly to TripleStore and the road has been paved to get alternative
implementations that connect to other fulltext index servers. ElasticSearch is next up to be implemented, but is
not done yet.

• General improvement of documentation

18.6.9 0.1.2 (released 2013-08-02)

• If using a RDFLib based triple store (storetype=”SQLITE” or “SLEEPYCAT”), when generating all documents,
all triples are read into memory, which speeds up the SPARQL querying considerably

• The TripleStore class has been overhauled and split into subclasses. Also gained the above inmemory function-
ality + the possibility of using command-line curl instead of requests when up/downloading large datasets.

• Content-negotiation when using the WSGI app (as described in doc/wsgi.rst) is supported

18.6.10 0.1.1 (released 2013-07-27)

This release fixes a bug with TOC generation on python 2, creates a correct long_description for pypi and adds some
uncommitted CSS improvements. Running the finished site under WSGI is now tested and works ok-ish (although
search is still unimplemented).

18.6. Changes 181

https://travis-ci.org/staffanm/ferenda/
https://coveralls.io/r/staffanm/ferenda

Ferenda Documentation, Release 0.3.1.dev1

18.6.11 0.1.0 (released 2013-07-26)

This is just a test release to test out pypi uploading as well as git branching and tagging. Neverthless, this code is
approaching feature completeness, except that running a finished site under WSGI hasn’t been tested. Generating a
static HTML site should work OK-ish.

182 Chapter 18. API reference

CHAPTER 19

Indices and tables

• genindex

• modindex

• search

183

Ferenda Documentation, Release 0.3.1.dev1

184 Chapter 19. Indices and tables

Python Module Index

f
ferenda.citationpatterns, 157
ferenda.decorators, 163
ferenda.elements, 128
ferenda.elements.html, 128
ferenda.errors, 164
ferenda.manager, 157
ferenda.testutil, 160
ferenda.uriformats, 157
ferenda.util, 152

185

Ferenda Documentation, Release 0.3.1.dev1

186 Python Module Index

Index

A
A (class in ferenda.elements.html), 130
Abbr (class in ferenda.elements.html), 130
about() (ferenda.Describer method), 133
Acronym (class in ferenda.elements.html), 130
action() (in module ferenda.decorators), 164
add_dependency() (ferenda.DocumentRepository

method), 107
add_grammar() (ferenda.CitationParser method), 137
add_serialized() (ferenda.TripleStore method), 139
add_serialized_file() (ferenda.TripleStore method), 139
addformatter() (ferenda.URIFormatter method), 138
Address (class in ferenda.elements.html), 129
alias (ferenda.Devel attribute), 173
alias (ferenda.DocumentRepository attribute), 97
all() (ferenda.Feed class method), 127
analyze_horizontal_margins() (ferenda.PDFAnalyzer

method), 148
analyze_styles() (ferenda.PDFAnalyzer method), 149
analyze_symbol() (ferenda.FSMParser method), 136
analyze_vertical_margins() (ferenda.PDFAnalyzer

method), 148
annotation_file_to_graph() (fer-

enda.DocumentRepository method), 109
annotation_path() (ferenda.DocumentStore method), 121
api() (ferenda.WSGIApp method), 149
archive() (ferenda.DocumentStore method), 119
ArchivingError, 165
ARN (class in ferenda.sources.legal.se), 168
Article (class in ferenda.elements.html), 131
as_xhtml() (ferenda.elements.html.Body method), 128
as_xhtml() (ferenda.pdfreader.Textbox method), 146
as_xhtml() (ferenda.pdfreader.Textelement method), 146
Aside (class in ferenda.elements.html), 131
assertAlmostEqualDatetime() (fer-

enda.testutil.FerendaTestCase method), 160
assertEqualDirs() (ferenda.testutil.FerendaTestCase

method), 160
assertEqualGraphs() (ferenda.testutil.FerendaTestCase

method), 160
assertEqualXML() (ferenda.testutil.FerendaTestCase

method), 160
atom_path() (ferenda.DocumentStore method), 121
AttachmentNameError, 165
AttachmentPolicyError, 165

B
B (class in ferenda.elements.html), 129
base27decode() (in module ferenda.util), 156
base27encode() (in module ferenda.util), 156
basefile (ferenda.DocumentEntry attribute), 114
basefile_from_uri() (ferenda.Devel method), 175
basefile_from_uri() (ferenda.DocumentRepository

method), 101
basefile_regex (ferenda.DocumentRepository attribute),

98
basefile_to_pathfrag() (ferenda.DocumentStore method),

118
Bdi (class in ferenda.elements.html), 131
BDO (class in ferenda.elements.html), 130
Between (class in ferenda.fulltextindex), 142
Big (class in ferenda.elements.html), 129
Blockquote (class in ferenda.elements.html), 129
Body (class in ferenda.elements.html), 128
bof() (ferenda.TextReader method), 143
BOLFS (class in ferenda.sources.legal.se.myndfskr), 169
Boolean (class in ferenda.fulltextindex), 142
booleanvalue() (ferenda.Facet class method), 124
boundingbox() (ferenda.pdfreader.Page method), 146
Br (class in ferenda.elements.html), 130
Button (class in ferenda.elements.html), 131

C
calculate_md5() (ferenda.DocumentEntry method), 116
canonical_uri() (ferenda.DocumentRepository method),

101
Caption (class in ferenda.elements.html), 131
check_output() (ferenda.testutil.Py23DocChecker

method), 161

187

Ferenda Documentation, Release 0.3.1.dev1

CitationParser (class in ferenda), 137
Cite (class in ferenda.elements.html), 130
classname (ferenda.elements.html.HTML5Element at-

tribute), 131
classname (ferenda.PDFReader attribute), 145
classname (ferenda.pdfreader.Page attribute), 146
classname (ferenda.pdfreader.Textbox attribute), 146
clear() (ferenda.TripleStore method), 140
clearstore() (ferenda.Devel method), 174
close() (ferenda.FulltextIndex method), 141
close() (ferenda.TripleStore method), 140
cluster() (in module ferenda.util), 156
Code (class in ferenda.elements.html), 130
Col (class in ferenda.elements.html), 131
Colgroup (class in ferenda.elements.html), 131
collate_locale (ferenda.DocumentRepository attribute),

98
commit() (ferenda.FulltextIndex method), 141
commondata (ferenda.DocumentRepository attribute), 99
CompositeRepository (class in ferenda), 150
CompositeStore (class in ferenda), 151
compression (ferenda.DocumentStore attribute), 116
config (ferenda.CompositeRepository attribute), 151
config (ferenda.DocumentRepository attribute), 100
ConfigurationError, 165
connect() (ferenda.FulltextIndex class method), 140
connect() (ferenda.TripleStore static method), 139
construct() (ferenda.Devel method), 174
construct() (ferenda.TripleStore method), 140
construct_annotations() (ferenda.DocumentRepository

method), 109
construct_sparql_query() (ferenda.DocumentRepository

method), 109
content (ferenda.DocumentEntry attribute), 115
copy_if_different() (in module ferenda.util), 154
copy_parsed() (ferenda.CompositeRepository method),

151
copyrepos() (ferenda.Devel method), 174
count_horizontal_margins() (ferenda.PDFAnalyzer

method), 148
count_horizontal_textbox() (ferenda.PDFAnalyzer

method), 148
count_styles() (ferenda.PDFAnalyzer method), 148
count_styles_textbox() (ferenda.PDFAnalyzer method),

148
count_vertical_margins() (ferenda.PDFAnalyzer

method), 148
count_vertical_textbox() (ferenda.PDFAnalyzer method),

148
create() (ferenda.FulltextIndex method), 140
create_external_resources() (fer-

enda.DocumentRepository method), 105
crop() (ferenda.pdfreader.Page method), 146
csvinventory() (ferenda.Devel method), 173

cue() (ferenda.TextReader method), 143
cuepast() (ferenda.TextReader method), 143

D
dataset_uri() (ferenda.DocumentRepository method), 101
Datetime (class in ferenda.fulltextindex), 142
DD (class in ferenda.elements.html), 129
defaultidentificator() (ferenda.Facet class method), 123
defaultselector() (ferenda.Facet class method), 123
Del (class in ferenda.elements.html), 131
dependencies_path() (ferenda.DocumentStore method),

121
Describer (class in ferenda), 132
destroy() (ferenda.FulltextIndex method), 140
destroyindex() (ferenda.Devel method), 174
Details (class in ferenda.elements.html), 131
detect_footnotes (ferenda.PDFReader attribute), 145
Devel (class in ferenda), 173
Dfn (class in ferenda.elements.html), 130
Dialog (class in ferenda.elements.html), 131
DIFS (class in ferenda.sources.legal.se.myndfskr), 169
dims (ferenda.PDFReader attribute), 145
DirAsp (class in ferenda.sources.legal.se.direktiv), 168
Direktiv (class in ferenda.sources.legal.se), 168
DirRegeringen (class in ferenda.sources.legal.se.direktiv),

168
DirTrips (class in ferenda.sources.legal.se.direktiv), 168
distill_test() (ferenda.testutil.RepoTester method), 161
distilled_path() (ferenda.DocumentStore method), 120
distilled_url() (ferenda.DocumentRepository method),

106
Div (class in ferenda.elements.html), 129
DL (class in ferenda.elements.html), 129
doccount() (ferenda.FulltextIndex method), 141
docroot (ferenda.testutil.RepoTester attribute), 161
Document (class in ferenda), 114
document_url_regex (ferenda.DocumentRepository at-

tribute), 98
document_url_template (ferenda.DocumentRepository

attribute), 98
DocumentEntry (class in ferenda), 114
documententry_path() (ferenda.DocumentStore method),

119
DocumentRemovedError, 164
DocumentRenamedError, 165
DocumentRepository (class in ferenda), 97
documents (ferenda.PDFAnalyzer attribute), 147
DocumentSkippedError, 165
DocumentStore (class in ferenda), 116
documentstore_class (ferenda.CompositeRepository at-

tribute), 150
documentstore_class (ferenda.Devel attribute), 175
documentstore_class (ferenda.DocumentRepository at-

tribute), 99

188 Index

Ferenda Documentation, Release 0.3.1.dev1

DOS (ferenda.TextReader attribute), 143
download() (ferenda.CompositeRepository method), 151
download() (ferenda.Devel method), 175
download() (ferenda.DocumentRepository method), 101
download_accept_400 (ferenda.DocumentRepository at-

tribute), 98
download_accept_404 (ferenda.DocumentRepository at-

tribute), 98
download_accept_406 (ferenda.DocumentRepository at-

tribute), 98
download_archive (ferenda.DocumentRepository at-

tribute), 98
download_get_basefiles() (ferenda.DocumentRepository

method), 102
download_get_first_page() (fer-

enda.DocumentRepository method), 102
download_if_needed() (ferenda.DocumentRepository

method), 102
download_is_different() (ferenda.DocumentRepository

method), 103
download_iterlinks (ferenda.DocumentRepository

attribute), 98
download_name_file() (ferenda.DocumentRepository

method), 103
download_reverseorder (ferenda.DocumentRepository at-

tribute), 99
download_single() (ferenda.DocumentRepository

method), 102
download_test() (ferenda.testutil.RepoTester method),

161
downloaded_path() (ferenda.DocumentStore method),

119
downloaded_suffix (ferenda.Devel attribute), 175
downloaded_suffix (ferenda.DocumentRepository at-

tribute), 98
downloaded_suffixes (ferenda.DocumentStore attribute),

116
downloaded_url() (ferenda.DocumentRepository

method), 103
DownloadError, 164
DownloadFileNotFoundError, 164
downloadmax() (in module ferenda.decorators), 164
drawboxes() (ferenda.PDFAnalyzer method), 149
Ds (class in ferenda.sources.legal.se), 169
DT (class in ferenda.elements.html), 129
dumprdf() (ferenda.Devel method), 173
dumpstore() (ferenda.Devel method), 173
DV (class in ferenda.sources.legal.se), 169
DVFS (class in ferenda.sources.legal.se.myndfskr), 169,

170

E
EIFS (class in ferenda.sources.legal.se.myndfskr), 170

elements_from_soup() (in module fer-
enda.elements.html), 128

ELSAKFS (class in ferenda.sources.legal.se.myndfskr),
170

Em (class in ferenda.elements.html), 130
emit() (ferenda.manager.MarshallingHandler method),

157
enable() (in module ferenda.manager), 159
ensure_dir() (in module ferenda.util), 152
eof() (ferenda.TextReader method), 143
eulaw (in module ferenda.citationpatterns), 157
eulaw() (in module ferenda.uriformats), 157
exception() (ferenda.WSGIApp method), 150
exception_description (ferenda.WSGIApp attribute), 150
exception_heading (ferenda.WSGIApp attribute), 150
exists() (ferenda.FulltextIndex method), 140
exists() (ferenda.ResourceLoader method), 126
ExternalCommandError, 165
ExternalCommandNotFound, 165
extrabases (ferenda.CompositeRepository attribute), 150
extract_text() (in module ferenda.util), 155
extractdir() (ferenda.ResourceLoader method), 126

F
Facet (class in ferenda), 122
facet_query() (ferenda.DocumentRepository method),

107
facet_select() (ferenda.DocumentRepository method),

108
faceted_data() (ferenda.DocumentRepository method),

107
facets() (ferenda.Devel method), 175
facets() (ferenda.DocumentRepository method), 107
Feed (class in ferenda), 127
Feedset (class in ferenda), 127
ferenda.citationpatterns (module), 157
ferenda.decorators (module), 163
ferenda.elements (module), 128
ferenda.elements.html (module), 128
ferenda.errors (module), 164
ferenda.manager (module), 157
ferenda.testutil (module), 160
ferenda.uriformats (module), 157
ferenda.util (module), 152
FerendaException, 164
FerendaTestCase (class in ferenda.testutil), 160
FFFS (class in ferenda.sources.legal.se.myndfskr), 170
FFS (class in ferenda.sources.legal.se.myndfskr), 170
fieldmapping (ferenda.FulltextIndex attribute), 141
Fieldset (class in ferenda.elements.html), 129
Figcaption (class in ferenda.elements.html), 132
Figure (class in ferenda.elements.html), 132
file_parametrize() (in module ferenda.testutil), 162
filename() (ferenda.ResourceLoader method), 126

Index 189

Ferenda Documentation, Release 0.3.1.dev1

filename_to_basefile() (ferenda.testutil.RepoTester
method), 161

filterdict() (ferenda.PDFAnalyzer method), 148
findmargin() (ferenda.PDFAnalyzer method), 148
firstletter() (ferenda.Facet class method), 124
flush() (ferenda.TextReader method), 144
font (ferenda.pdfreader.Textbox attribute), 146
fontdict() (ferenda.PDFAnalyzer method), 149
fontsize_key() (ferenda.PDFAnalyzer method), 149
Footer (class in ferenda.elements.html), 132
footer() (ferenda.Devel method), 175
footer() (ferenda.DocumentRepository method), 114
footer_significance_threshold (ferenda.PDFAnalyzer at-

tribute), 147
Form (class in ferenda.elements.html), 129
format() (ferenda.URIFormatter method), 138
formatterfor() (ferenda.URIFormatter method), 138
from_native_field() (ferenda.FulltextIndex method), 142
from_roman() (in module ferenda.util), 156
frontpage() (in module ferenda.manager), 158
frontpage_content() (ferenda.DocumentRepository

method), 113
fsmparse() (ferenda.Devel method), 174
FSMParser (class in ferenda), 136
FSMStateError, 164
FulltextIndex (class in ferenda), 140

G
generate() (ferenda.Devel method), 175
generate() (ferenda.DocumentRepository method), 108
generate_all_setup() (ferenda.DocumentRepository class

method), 108
generate_all_teardown() (ferenda.DocumentRepository

class method), 108
generated_path() (ferenda.DocumentStore method), 120
generated_url() (ferenda.DocumentRepository method),

109
generic() (in module ferenda.uriformats), 157
generic_url() (ferenda.DocumentRepository method),

103
get_archive_version() (ferenda.DocumentRepository

method), 100
get_default_options() (ferenda.CompositeRepository

class method), 150
get_default_options() (ferenda.Devel class method), 175
get_default_options() (ferenda.DocumentRepository

class method), 100
get_default_schema() (ferenda.FulltextIndex method),

140
get_instance() (ferenda.CompositeRepository method),

150
get_preferred_instances() (ferenda.CompositeRepository

method), 151

get_required_predicates() (ferenda.DocumentRepository
method), 101

get_serialized() (ferenda.TripleStore method), 139
get_serialized_file() (ferenda.TripleStore method), 139
get_status() (ferenda.DocumentRepository method), 113
get_url_transform_func() (ferenda.DocumentRepository

method), 108
getiterator() (ferenda.TextReader method), 144
getproctitle() (in module ferenda.manager), 157
getrdftype() (ferenda.Describer method), 133
getreader() (ferenda.TextReader method), 144
getrel() (ferenda.Describer method), 133
getrels() (ferenda.Describer method), 133
getvalue() (ferenda.Describer method), 133
getvalues() (ferenda.Describer method), 133
graph_to_annotation_file() (fer-

enda.DocumentRepository method), 109
guess_pagenumber() (ferenda.PDFAnalyzer method),

147
guess_pagenumber_boxes() (ferenda.PDFAnalyzer

method), 147
guess_pagenumber_candidates() (ferenda.PDFAnalyzer

method), 147
guess_pagenumber_select() (ferenda.PDFAnalyzer

method), 147
guess_type() (ferenda.DocumentEntry method), 116
gYear (class in ferenda.util), 152
gYearMonth (class in ferenda.util), 152

H
H1 (class in ferenda.elements.html), 128
H2 (class in ferenda.elements.html), 128
H3 (class in ferenda.elements.html), 128
H4 (class in ferenda.elements.html), 128
H5 (class in ferenda.elements.html), 128
H6 (class in ferenda.elements.html), 129
handleerror() (in module ferenda.decorators), 164
Head (class in ferenda.elements.html), 128
Header (class in ferenda.elements.html), 132
header_significance_threshold (ferenda.PDFAnalyzer at-

tribute), 147
Hgroup (class in ferenda.elements.html), 132
HR (class in ferenda.elements.html), 129
HTML (class in ferenda.elements.html), 128
HTML5Element (class in ferenda.elements.html), 131
HTMLElement (class in ferenda.elements.html), 128

I
I (class in ferenda.elements.html), 129
id (ferenda.DocumentEntry attribute), 114
id (ferenda.pdfreader.Page attribute), 146
Identifier (class in ferenda.fulltextindex), 142
ifneeded() (in module ferenda.decorators), 163
Img (class in ferenda.elements.html), 130

190 Index

Ferenda Documentation, Release 0.3.1.dev1

increment() (in module ferenda.util), 156
indexed_dep (ferenda.DocumentEntry attribute), 115
indexed_ft (ferenda.DocumentEntry attribute), 115
indexed_ts (ferenda.DocumentEntry attribute), 115
IndexedType (class in ferenda.fulltextindex), 142
IndexingError, 165
indextypes (ferenda.FulltextIndex attribute), 140
Input (class in ferenda.elements.html), 130
Ins (class in ferenda.elements.html), 131
intermediate_path() (ferenda.DocumentStore method),

119
intermediate_suffixes (ferenda.DocumentStore attribute),

116
invalid_suffixes (ferenda.DocumentStore attribute), 116
InvalidTree, 165
is_empty() (ferenda.PDFReader method), 145
is_roman() (in module ferenda.util), 156

J
JK (class in ferenda.sources.legal.se), 169
JO (class in ferenda.sources.legal.se), 169
json_default_date() (in module ferenda.util), 156

K
Kbd (class in ferenda.elements.html), 130
Keyword (class in ferenda.fulltextindex), 142
Keyword (class in ferenda.sources.general), 166
Kommitte (class in ferenda.sources.legal.se), 169
KOVFS (class in ferenda.sources.legal.se.myndfskr), 170
KVFS (class in ferenda.sources.legal.se.myndfskr), 170

L
Label (class in ferenda.elements.html), 131
Label (class in ferenda.fulltextindex), 142
lang (ferenda.DocumentRepository attribute), 98
lastread() (ferenda.TextReader method), 143
Less (class in ferenda.fulltextindex), 142
LI (class in ferenda.elements.html), 129
LIFS (class in ferenda.sources.legal.se.myndfskr), 170
linespacing (ferenda.pdfreader.Textbox attribute), 146
link (ferenda.DocumentEntry attribute), 115
link_or_copy() (in module ferenda.util), 154
list_attachments() (ferenda.DocumentStore method), 118
list_basefiles_for() (ferenda.CompositeStore method),

151
list_basefiles_for() (ferenda.DocumentStore method),

117
list_dirs() (in module ferenda.util), 153
list_versions() (ferenda.DocumentStore method), 118
LMFS (class in ferenda.sources.legal.se.myndfskr), 170
load() (ferenda.ResourceLoader method), 126
loadpath (ferenda.DocumentRepository attribute), 98
location_exception() (in module ferenda.util), 156
log (ferenda.WordReader attribute), 149

logtime() (in module ferenda.util), 156
lookup_resource() (ferenda.DocumentRepository

method), 100
LVFS (class in ferenda.sources.legal.se.myndfskr), 170

M
MAC (ferenda.TextReader attribute), 143
make() (ferenda.Resources method), 150
make_api_files() (ferenda.Resources method), 150
make_child() (ferenda.FSMParser method), 137
make_children() (ferenda.FSMParser method), 137
make_css() (ferenda.Resources method), 150
make_document() (ferenda.DocumentRepository

method), 105
make_graph() (ferenda.DocumentRepository method),

105
make_img() (ferenda.Resources method), 150
make_js() (ferenda.Resources method), 150
make_json_date_object_hook() (in module ferenda.util),

156
make_loadpath() (ferenda.ResourceLoader static

method), 125
make_resources_xml() (ferenda.Resources method), 150
make_schema() (ferenda.FulltextIndex method), 140
make_wsgi_app() (in module ferenda.manager), 158
makedocument() (in module ferenda.decorators), 164
makeresources() (in module ferenda.manager), 158
managedparsing() (in module ferenda.decorators), 164
mangle_result() (ferenda.WSGIApp method), 150
mangle_results() (ferenda.WSGIApp method), 150
margins (ferenda.pdfreader.Page attribute), 146
Mark (class in ferenda.elements.html), 132
marshal() (ferenda.manager.MarshallingHandler

method), 158
MarshallingHandler (class in ferenda.manager), 157
max_resources (ferenda.DocumentRepository attribute),

99
MaxDownloadsReached, 166
median_box_width() (ferenda.PDFReader method), 146
MediaWiki (class in ferenda.sources.general), 166
merge_dict_recursive() (in module ferenda.util), 155
Meter (class in ferenda.elements.html), 132
metrics() (ferenda.PDFAnalyzer method), 147
MIGRFS (class in ferenda.sources.legal.se.myndfskr),

171
mkdir() (in module ferenda.util), 152
mkpatch() (ferenda.Devel method), 173
More (class in ferenda.fulltextindex), 142
MPRTFS (class in ferenda.sources.legal.se.myndfskr),

171
MSBFS (class in ferenda.sources.legal.se.myndfskr), 171
MYHFS (class in ferenda.sources.legal.se.myndfskr), 171
MyndFskrBase (class in fer-

enda.sources.legal.se.myndfskr), 169

Index 191

Ferenda Documentation, Release 0.3.1.dev1

N
name_from_fp() (in module ferenda.util), 152
namespaces (ferenda.DocumentRepository attribute), 98
Nav (class in ferenda.elements.html), 132
needed() (ferenda.DocumentStore method), 117
news() (ferenda.Devel method), 175
news() (ferenda.DocumentRepository method), 112
news_entries() (ferenda.DocumentRepository method),

113
news_entrysort_key() (ferenda.DocumentRepository

method), 112
news_facet_entries() (ferenda.DocumentRepository

method), 112
news_feedsets() (ferenda.DocumentRepository method),

112
news_feedsets_main_label (fer-

enda.DocumentRepository attribute), 112
news_generate_feeds() (ferenda.DocumentRepository

method), 113
news_item() (ferenda.DocumentRepository method), 112
news_select_for_feeds() (ferenda.DocumentRepository

method), 112
news_sortkey (ferenda.DocumentRepository attribute),

112
news_write_atom() (ferenda.DocumentRepository

method), 113
newstate() (in module ferenda.decorators), 164
next() (ferenda.TextReader method), 145
NFS (class in ferenda.sources.legal.se.myndfskr), 171
NoDownloadedFileError, 165
normalize_space() (in module ferenda.util), 153
ns (ferenda.Devel attribute), 175
ns (in module ferenda.util), 152
numcmp() (in module ferenda.util), 152

O
Object (class in ferenda.elements.html), 130
OL (class in ferenda.elements.html), 129
ontologies (ferenda.DocumentRepository attribute), 99
open() (ferenda.DocumentStore method), 117
open() (ferenda.FulltextIndex method), 140
open() (ferenda.ResourceLoader method), 126
open_annotation() (ferenda.DocumentStore method), 121
open_dependencies() (ferenda.DocumentStore method),

121
open_distilled() (ferenda.DocumentStore method), 120
open_downloaded() (ferenda.DocumentStore method),

119
open_generated() (ferenda.DocumentStore method), 121
open_intermediate() (ferenda.DocumentStore method),

120
open_parsed() (ferenda.DocumentStore method), 120
open_resource() (ferenda.DocumentStore method), 116
open_serialized() (ferenda.DocumentStore method), 120

openfp() (ferenda.ResourceLoader method), 126
orig_checked (ferenda.DocumentEntry attribute), 114
orig_created (ferenda.DocumentEntry attribute), 114
orig_updated (ferenda.DocumentEntry attribute), 114
orig_url (ferenda.DocumentEntry attribute), 115
outfile_is_newer() (in module ferenda.util), 154
OutfileIsNotNewer (class in ferenda.util), 154

P
P (class in ferenda.elements.html), 128
Page (class in ferenda.pdfreader), 146
paginate() (ferenda.PDFAnalyzer method), 147
pagination_min_size (ferenda.PDFAnalyzer attribute),

147
parametrize() (in module ferenda.testutil), 162
parametrize_repotester() (in module ferenda.testutil), 163
parse() (ferenda.CompositeRepository method), 151
parse() (ferenda.Devel method), 175
parse() (ferenda.DocumentRepository method), 104
parse() (ferenda.FSMParser method), 136
parse_all_setup() (ferenda.DocumentRepository class

method), 103
parse_all_teardown() (ferenda.DocumentRepository class

method), 104
parse_content_selector (ferenda.DocumentRepository at-

tribute), 99
parse_document_from_soup() (fer-

enda.DocumentRepository method), 105
parse_entry_id() (ferenda.DocumentRepository method),

104
parse_entry_summary() (ferenda.DocumentRepository

method), 104
parse_entry_title() (ferenda.DocumentRepository

method), 104
parse_entry_update() (ferenda.DocumentRepository

method), 104
parse_filter_selectors (ferenda.DocumentRepository at-

tribute), 99
parse_metadata_from_soup() (fer-

enda.DocumentRepository method), 104
parse_parameters() (ferenda.WSGIApp method), 150
parse_recursive() (ferenda.CitationParser method), 138
parse_rfc822_date() (in module ferenda.util), 154
parse_string() (ferenda.CitationParser method), 137
parse_test() (ferenda.testutil.RepoTester method), 161
parsed_path() (ferenda.DocumentStore method), 120
parsed_url() (ferenda.DocumentRepository method), 106
ParseError, 164
ParseErrorWrapper, 158
parseifneeded() (in module ferenda.decorators), 163
parseresults_as_xml() (in module ferenda.util), 156
parsestring() (ferenda.Devel method), 174
patch_if_needed() (ferenda.DocumentRepository

method), 105

192 Index

Ferenda Documentation, Release 0.3.1.dev1

PatchError, 165
path() (ferenda.DocumentStore method), 116
pathfrag_to_basefile() (ferenda.DocumentStore method),

119
PDFAnalyzer (class in ferenda), 146
PDFDecodeError, 166
PDFFileIsEmpty, 166
PDFReader (class in ferenda), 145
peek() (ferenda.TextReader method), 143
peekchunk() (ferenda.TextReader method), 143
peekline() (ferenda.TextReader method), 143
peekparagraph() (ferenda.TextReader method), 143
plot() (ferenda.PDFAnalyzer method), 149
plot_margins() (ferenda.PDFAnalyzer method), 149
plot_styles() (ferenda.PDFAnalyzer method), 149
Pre (class in ferenda.elements.html), 129
prep_annotation_file() (ferenda.DocumentRepository

method), 108
prev() (ferenda.TextReader method), 143
prevchunk() (ferenda.TextReader method), 144
prevline() (ferenda.TextReader method), 143
prevparagraph() (ferenda.TextReader method), 144
Progress (class in ferenda.elements.html), 132
Propositioner (class in ferenda.sources.legal.se), 172
PropRegeringen (class in fer-

enda.sources.legal.se.propositioner), 172
PropRiksdagen (class in fer-

enda.sources.legal.se.propositioner), 172
PropTrips (class in fer-

enda.sources.legal.se.propositioner), 172
published (ferenda.DocumentEntry attribute), 115
Py23DocChecker (class in ferenda.testutil), 161

Q
Q (class in ferenda.elements.html), 130
qname() (ferenda.Facet class method), 125
qualified_class_name() (ferenda.DocumentRepository

method), 101
query() (ferenda.FulltextIndex method), 141
query() (ferenda.WSGIApp method), 150
queryindex() (ferenda.Devel method), 174

R
RAFS (class in ferenda.sources.legal.se.myndfskr), 171
rdf_type (ferenda.DocumentRepository attribute), 99
rdftype() (ferenda.Describer method), 134
re_dimensions() (ferenda.PDFReader method), 145
re_fromgraph (ferenda.TripleStore attribute), 139
read() (ferenda.TextReader method), 144
read() (ferenda.WordReader method), 149
readchunk() (ferenda.TextReader method), 143
readfile() (in module ferenda.util), 155
readline() (ferenda.TextReader method), 144
readpage() (ferenda.TextReader method), 143

readparagraph() (ferenda.TextReader method), 143
readto() (ferenda.TextReader method), 143
recordlastdownload() (in module ferenda.decorators), 163
rel() (ferenda.Describer method), 134
relate() (ferenda.Devel method), 175
relate() (ferenda.DocumentRepository method), 106
relate_all_setup() (ferenda.DocumentRepository class

method), 106
relate_all_teardown() (ferenda.DocumentRepository

class method), 106
relate_dependencies() (ferenda.DocumentRepository

method), 107
relate_fulltext() (ferenda.DocumentRepository method),

107
relate_triples() (ferenda.DocumentRepository method),

107
relurl() (in module ferenda.util), 152
remote_url() (ferenda.DocumentRepository method), 103
remove_recognizer() (ferenda.FSMParser method), 136
render() (in module ferenda.decorators), 163
render_xhtml() (ferenda.DocumentRepository method),

106
render_xhtml_tree() (ferenda.DocumentRepository

method), 106
render_xhtml_validate() (ferenda.DocumentRepository

method), 106
replace_if_different() (in module ferenda.util), 153
repoclass (ferenda.testutil.RepoTester attribute), 161
RepoTester (class in ferenda.testutil), 161
requesthandler_class (ferenda.DocumentRepository at-

tribute), 99
RequestHandlerError, 166
required_predicates (ferenda.DocumentRepository

attribute), 99
Resource (class in ferenda.fulltextindex), 142
resource_extract() (in module ferenda.util), 155
resourcelabel() (ferenda.Facet class method), 124
resourcelabel_or_qname() (ferenda.Facet class method),

125
ResourceLoader (class in ferenda), 125
resourceloader (ferenda.Devel attribute), 175
ResourceNotFound, 166
resourcepath() (ferenda.DocumentStore method), 116
Resources (class in ferenda), 150
rev() (ferenda.Describer method), 134
RFC (class in ferenda.sources.tech), 168
rfc_3339_timestamp() (in module ferenda.util), 154
RGKFS (class in ferenda.sources.legal.se.myndfskr), 171
robust_fetch() (in module ferenda.util), 156
robust_remove() (in module ferenda.util), 152
robust_rename() (in module ferenda.util), 152
Rp (class in ferenda.elements.html), 132
Rt (class in ferenda.elements.html), 132
Ruby (class in ferenda.elements.html), 132

Index 193

Ferenda Documentation, Release 0.3.1.dev1

run() (in module ferenda.manager), 159
runbuildclient() (in module ferenda.manager), 160
runbuildqueue() (in module ferenda.manager), 160
runcmd() (in module ferenda.util), 153
runserver() (in module ferenda.manager), 158
runsetup() (in module ferenda.manager), 159

S
Samp (class in ferenda.elements.html), 130
samplerepo() (ferenda.Devel method), 174
samplerepos() (ferenda.Devel method), 175
save() (ferenda.DocumentEntry method), 115
schema() (ferenda.FulltextIndex method), 141
SchemaConflictError, 165
SchemaMappingError, 165
search() (ferenda.WSGIApp method), 149
SearchingError, 165
SearchModifier (class in ferenda.fulltextindex), 142
Section (class in ferenda.elements.html), 132
seek() (ferenda.TextReader method), 144
Select (class in ferenda.elements.html), 130
select() (ferenda.Devel method), 174
select() (ferenda.TripleStore method), 139
serialized_path() (ferenda.DocumentStore method), 120
set_content() (ferenda.DocumentEntry method), 115
set_formatter() (ferenda.CitationParser method), 137
set_link() (ferenda.DocumentEntry method), 115
set_recognizers() (ferenda.FSMParser method), 136
set_transitions() (ferenda.FSMParser method), 136
setproctitle() (in module ferenda.manager), 157
setup() (ferenda.Devel class method), 175
setup() (ferenda.DocumentRepository class method), 100
setUp() (ferenda.testutil.RepoTester method), 161
setup() (in module ferenda.manager), 159
setup_horizontal_counters() (ferenda.PDFAnalyzer

method), 148
setup_logger() (in module ferenda.manager), 159
setup_vertical_counters() (ferenda.PDFAnalyzer

method), 148
setUpClass() (ferenda.testutil.RepoTester class method),

161
SFS (class in ferenda.sources.legal.se), 172
shutdown_logger() (in module ferenda.manager), 159
Sitenews (class in ferenda.sources.general), 167
SJVFS (class in ferenda.sources.legal.se.myndfskr), 171
Skeleton (class in ferenda.sources.general), 167
SKVFS (class in ferenda.sources.legal.se.myndfskr), 171
Small (class in ferenda.elements.html), 129
sortresource() (ferenda.Facet class method), 125
SOSFS (class in ferenda.sources.legal.se.myndfskr), 171
SOU (class in ferenda.sources.legal.se), 172
SOUKB (class in ferenda.sources.legal.se.sou), 172
soup_from_basefile() (ferenda.DocumentRepository

method), 104

source_encoding (ferenda.DocumentRepository at-
tribute), 99

SOURegeringen (class in ferenda.sources.legal.se.sou),
172

Span (class in ferenda.elements.html), 130
sparql_annotations (ferenda.DocumentRepository at-

tribute), 99
sparql_expect_results (ferenda.DocumentRepository at-

tribute), 99
SparqlError, 165
split_numalpha() (in module ferenda.util), 153
start_url (ferenda.DocumentRepository attribute), 98
Static (class in ferenda.sources.general), 167
static() (ferenda.WSGIApp method), 149
stats() (ferenda.WSGIApp method), 150
stats_slice() (ferenda.WSGIApp method), 150
status (ferenda.DocumentEntry attribute), 115
status() (in module ferenda.manager), 158
statusreport() (ferenda.Devel method), 175
STFS (class in ferenda.sources.legal.se.myndfskr), 172
storage_policy (ferenda.Devel attribute), 175
storage_policy (ferenda.DocumentRepository attribute),

97
stream() (ferenda.WSGIApp method), 150
string (ferenda.PDFReader attribute), 146
Strong (class in ferenda.elements.html), 130
strptime() (in module ferenda.util), 154
style_significance_threshold (ferenda.PDFAnalyzer at-

tribute), 147
Sub (class in ferenda.elements.html), 130
subrepos (ferenda.CompositeRepository attribute), 150
Summary (class in ferenda.elements.html), 132
summary (ferenda.DocumentEntry attribute), 115
Sup (class in ferenda.elements.html), 130
supress_subrepo_logging (ferenda.CompositeRepository

attribute), 150
SvKFS (class in ferenda.sources.legal.se.myndfskr), 172
switch_locale() (in module ferenda.util), 156

T
Table (class in ferenda.elements.html), 129
tabs() (ferenda.Devel method), 175
tabs() (ferenda.DocumentRepository method), 113
tagname (ferenda.elements.html.HTML5Element at-

tribute), 131
tagname (ferenda.PDFReader attribute), 145
tagname (ferenda.pdfreader.Page attribute), 146
tagname (ferenda.pdfreader.Textbox attribute), 146
tagname (ferenda.pdfreader.Textelement attribute), 146
Tbody (class in ferenda.elements.html), 131
TD (class in ferenda.elements.html), 131
teardown() (ferenda.Devel class method), 175
teardown() (ferenda.DocumentRepository class method),

100

194 Index

Ferenda Documentation, Release 0.3.1.dev1

tearDown() (ferenda.testutil.RepoTester method), 161
tearDownClass() (ferenda.testutil.RepoTester class

method), 161
tell() (ferenda.TextReader method), 144
term() (ferenda.Facet class method), 125
testparser() (in module ferenda.testutil), 163
Text (class in ferenda.fulltextindex), 142
Textarea (class in ferenda.elements.html), 131
Textbox (class in ferenda.pdfreader), 146
textboxes() (ferenda.PDFAnalyzer method), 148
textboxes() (ferenda.PDFReader method), 145
Textelement (class in ferenda.pdfreader), 146
TextReader (class in ferenda), 142
Tfoot (class in ferenda.elements.html), 131
TH (class in ferenda.elements.html), 131
Thead (class in ferenda.elements.html), 131
Time (class in ferenda.elements.html), 132
timed() (in module ferenda.decorators), 163
Title (class in ferenda.elements.html), 128
title (ferenda.DocumentEntry attribute), 115
title_sortkey() (in module ferenda.util), 156
titlesortkey() (ferenda.Facet class method), 124
to_native_field() (ferenda.FulltextIndex method), 142
to_roman() (in module ferenda.util), 156
toc() (ferenda.Devel method), 175
toc() (ferenda.DocumentRepository method), 109
toc_generate_first_page() (ferenda.DocumentRepository

method), 111
toc_generate_page() (ferenda.DocumentRepository

method), 111
toc_generate_page_body() (fer-

enda.DocumentRepository method), 112
toc_generate_pages() (ferenda.DocumentRepository

method), 111
toc_item() (ferenda.DocumentRepository method), 111
toc_pagesets() (ferenda.DocumentRepository method),

110
toc_select_for_pages() (ferenda.DocumentRepository

method), 110
TocPage (class in ferenda), 126
TocPageset (class in ferenda), 127
top() (ferenda.util.TopCounter method), 152
TopCounter (class in ferenda.util), 152
TR (class in ferenda.elements.html), 131
transform() (ferenda.Transformer method), 135
transform_file() (ferenda.Transformer method), 136
transform_links() (ferenda.Transformer method), 135
transform_stream() (ferenda.Transformer method), 136
Transformer (class in ferenda), 135
TransformError, 165
transformlinks() (ferenda.DocumentRepository method),

109
transition() (ferenda.FSMParser method), 136
triple_count() (ferenda.TripleStore method), 140

TripleStore (class in ferenda), 138
TriplestoreError, 165
TT (class in ferenda.elements.html), 129
twopage (ferenda.PDFAnalyzer attribute), 147

U
U (class in ferenda.elements.html), 129
ucfirst() (in module ferenda.util), 154
UL (class in ferenda.elements.html), 129
UNIX (ferenda.TextReader attribute), 143
update() (ferenda.FulltextIndex method), 141
update() (ferenda.TripleStore method), 140
updated (ferenda.DocumentEntry attribute), 115
updateentry() (ferenda.DocumentEntry static method),

116
updateentry() (in module ferenda.decorators), 164
URI (class in ferenda.fulltextindex), 142
uri_leaf() (in module ferenda.util), 155
URIFormatter (class in ferenda), 138
url (ferenda.DocumentEntry attribute), 115
url (in module ferenda.citationpatterns), 157
url() (in module ferenda.uriformats), 157

V
ValidationError, 165
value() (ferenda.Describer method), 134
Var (class in ferenda.elements.html), 130

W
W3Standards (class in ferenda.sources.tech), 168
Wbr (class in ferenda.elements.html), 132
word_to_docbook() (ferenda.WordReader method), 149
word_to_ooxml() (ferenda.WordReader method), 149
WordReader (class in ferenda), 149
write() (ferenda.TextReader method), 144
writefile() (in module ferenda.util), 155
writelines() (ferenda.TextReader method), 144
ws_trans (ferenda.PDFReader attribute), 145
wsgi() (ferenda.Devel method), 174
WSGIApp (class in ferenda), 149

X
xslt_template (ferenda.DocumentRepository attribute),

99

Y
year() (ferenda.Facet class method), 123

Index 195

	Introduction to Ferenda
	Example
	Prerequisites
	Installing
	Features
	Next step

	First steps
	Creating a Document repository class
	Using ferenda-build.py and registering docrepo classes
	Downloading
	Parsing
	Republishing the parsed content

	Creating your own document repositories
	Writing your own download implementation
	Writing your own parse implementation
	Calling relate()
	Calling makeresources()
	Customizing generate()
	Customizing toc()
	Customizing news()
	Customizing frontpage()
	Next steps

	Key concepts
	Project
	Configuration
	DocumentRepository
	Document
	Identifiers
	DocumentEntry
	File storage
	Resources and the loadpath

	Parsing and representing document metadata
	Document URI
	Adding metadata using the RDFLib API
	A simpler way of adding metadata
	Vocabularies
	Serialization of metadata
	Metadata about parts of the document

	Building structured documents
	Creating your own element classes
	Mixin classes
	Rendering to XHTML
	Convenience methods

	Parsing document structure
	FSMParser
	A simple example
	Writing complex parsers
	Tips for debugging your parser

	Citation parsing
	The built-in solution
	Extending the built-in support
	Rolling your own

	Reading files in various formats
	Reading plain text files
	Microsoft Word documents
	PDF documents

	Grouping documents with facets
	Applying facets
	Selectors and identificators
	Contexts where facets are used
	Grouping a document in several groups
	Combining facets from different docrepos

	Customizing the table(s) of content
	Defining facets for grouping and sorting
	Getting information about all documents
	Making the TOC pages
	The first page

	Customizing the news feeds
	The WSGI app
	Running the web application
	URLs for retrieving resources

	The ReST API for querying
	Free text queries
	Result lists
	Parameters
	Paging
	Statistics
	Ranges
	Support resources
	Legacy mode

	Setting up external databases
	Triple stores
	Fulltext search engines

	Testing your docrepo
	Extra assert methods
	Creating parametric tests
	RepoTester
	Download tests
	Distill and parse tests
	Py23DocChecker
	testparser

	Advanced topics
	Composite docrepos
	Patch files
	External annotations
	Keyword hubs
	Custom common data
	Custom ontologies
	Parallel processing

	API reference
	Classes
	Modules
	Decorators
	Errors
	Document repositories
	Changes

	Indices and tables
	Python Module Index

