

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Ferenda 0.3.0 documentation

Ferenda

Ferenda is a python library and framework for transforming
unstructured document collections into structured
Linked Data [http://en.wikipedia.org/wiki/Linked_data]. It helps
with downloading documents, parsing them to add explicit semantic
structure and RDF-based metadata, finding relationships between
documents, and republishing the results.

	Introduction to Ferenda
	Example

	Prerequisites

	Installing

	Features

	Next step

	First steps
	Creating a Document repository class

	Using ferenda-build.py and registering docrepo classes

	Downloading

	Parsing

	Republishing the parsed content

	Creating your own document repositories
	Writing your own download implementation

	Writing your own parse implementation

	Calling relate()

	Calling makeresources()

	Customizing generate()

	Customizing toc()

	Customizing news()

	Customizing frontpage()

	Next steps

	Key concepts
	Project

	Configuration

	DocumentRepository

	Document

	Identifiers

	DocumentEntry

	File storage

	Parsing and representing document metadata
	Document URI

	Adding metadata using the RDFLib API

	A simpler way of adding metadata

	Vocabularies

	Serialization of metadata

	Metadata about parts of the document

	Building structured documents
	Creating your own element classes

	Mixin classes

	Rendering to XHTML

	Convenience methods

	Parsing document structure
	FSMParser

	A simple example

	Writing complex parsers

	Tips for debugging your parser

	Citation parsing
	The built-in solution

	Extending the built-in support

	Rolling your own

	Reading files in various formats
	Reading plain text files

	Microsoft Word documents

	PDF documents

	Grouping documents with facets
	Applying facets

	Selectors and identificators

	Contexts where facets are used

	Grouping a document in several groups

	Combining facets from different docrepos

	Customizing the table(s) of content
	Defining facets for grouping and sorting

	Getting information about all documents

	Making the TOC pages

	The first page

	Customizing the news feeds

	The WSGI app
	Running the web application

	URLs for retrieving resources

	The ReST API for querying
	Free text queries

	Result lists

	Parameters

	Paging

	Statistics

	Ranges

	Support resources

	Legacy mode

	Setting up external databases
	Triple stores

	Fulltext search engines

	Testing your docrepo
	Extra assert methods

	Creating parametric tests

	RepoTester

	Download tests

	Distill and parse tests

	Py23DocChecker

	testparser

	Advanced topics
	Composite docrepos

	Patch files

	External annotations

	Keyword hubs

	Custom common data

	Custom ontologies

	Parallel processing

API reference

Classes

	The DocumentRepository class

	The Document class

	The DocumentEntry class

	The DocumentStore class

	The Facet class

	The TocPage class

	The TocPageset class

	The Feed class

	The Feedset class

	The elements classes

	The elements.html classes

	The Describer class

	The Transformer class

	The FSMParser class

	The CitationParser class

	The URIFormatter class

	The TripleStore class

	The FulltextIndex class

	The TextReader class

	The PDFReader class

	The PDFAnalyzer class

	The WordReader class

Modules

	The util module

	The citationpatterns module

	The uriformats module

	The manager module

	The testutil module

Decorators

	Decorators

Errors

	Errors

Document repositories

	ferenda.sources.general.Static – generate documents from your own .rst files

	ferenda.sources.general.Keyword – generate documents for keywords used by document in other docrepos

	ferenda.sources.general.MediaWiki – pull in commentary on documents and keywords from a MediaWiki instance

	ferenda.sources.general.Skeleton – generate skeleton documents for references from other documents

	ferenda.sources.tech – repositories for technical standards
	W3Standards

	RFC

	ferenda.sources.legal.eu – repositories for EU law
	EurlexTreaties

	EurlexCaselaw

	ferenda.sources.legal.se – repositories for Swedish law
	ARN

	Direktiv

	Ds

	DV

	JK

	JO

	Kommitte

	MyndFskr

	Propositioner

	SFS

	The Devel class

Changes

	0.3.0 (released 2015-02-18)

	0.2.0 (released 2014-07-23)

	0.1.7 (released 2014-04-22)

	0.1.6.1 (released 2013-11-13)

	0.1.6 (released 2013-11-13)

	0.1.5 (released 2013-09-29)

	0.1.4 (released 2013-08-26)

	0.1.3 (released 2013-08-11)

	0.1.2 (released 2013-08-02)

	0.1.1 (released 2013-07-27)

	0.1.0 (released 2013-07-26)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Introduction to Ferenda

Ferenda is a python library and framework for transforming
unstructured document collections into structured
Linked Data [http://en.wikipedia.org/wiki/Linked_data]. It helps
with downloading documents, parsing them to add explicit semantic
structure and RDF-based metadata, finding relationships between
documents, and republishing the results.

It uses the XHTML and RDFa standards for representing semantic
structure, and republishes content using Linked Data principles and a
REST-based API.

Ferenda works best for large document collections that have some
degree of internal standardization, such as the laws of a particular
country, technical standards, or reports published in a series. It is
particularly useful for collections that contains explicit references
between documents, within or across collections.

It is designed to make it easy to get started with basic downloading,
parsing and republishing of documents, and then to improve each step
incrementally.

Example

Ferenda can be used either as a library or as a command-line
tool. This code uses the Ferenda API to create a website containing
all(*) RFCs and W3C recommended standards.

from ferenda.sources.tech import RFC, W3Standards
from ferenda.manager import makeresources, frontpage, runserver, setup_logger
from ferenda.errors import DocumentRemovedError, ParseError, FSMStateError

config = {'datadir':'netstandards/exampledata',
 'loglevel':'DEBUG',
 'force':False,
 'storetype':'SQLITE',
 'storelocation':'netstandards/exampledata/netstandards.sqlite',
 'storerepository':'netstandards',
 'downloadmax': 50 # remove this to download everything
}
setup_logger(level='DEBUG')

Set up two document repositories
docrepos = (RFC(**config), W3Standards(**config))

for docrepo in docrepos:
 # Download a bunch of documents
 docrepo.download()

 # Parse all downloaded documents
 for basefile in docrepo.store.list_basefiles_for("parse"):
 try:
 docrepo.parse(basefile)
 except ParseError as e:
 pass # or handle this in an appropriate way

 # Index the text content and metadata of all parsed documents
 for basefile in docrepo.store.list_basefiles_for("relate"):
 docrepo.relate(basefile, docrepos)

Prepare various assets for web site navigation
makeresources(docrepos,
 resourcedir="netstandards/exampledata/rsrc",
 sitename="Netstandards",
 sitedescription="A repository of internet standard documents")

Relate for all repos must run before generate for any repo
for docrepo in docrepos:
 # Generate static HTML files from the parsed documents,
 # with back- and forward links between them, etc.
 for basefile in docrepo.store.list_basefiles_for("generate"):
 docrepo.generate(basefile)

 # Generate a table of contents of all available documents
 docrepo.toc()
 # Generate feeds of new and updated documents, in HTML and Atom flavors
 docrepo.news()

Create a frontpage for the entire site
frontpage(docrepos,path="netstandards/exampledata/index.html")

Start WSGI app at http://localhost:8000/ with navigation,
document viewing, search and API
runserver(docrepos, port=8000, documentroot="netstandards/exampledata")

Alternately, using the command line tools and the project framework:

$ ferenda-setup netstandards
$ cd netstandards
$./ferenda-build.py ferenda.sources.tech.RFC enable
$./ferenda-build.py ferenda.sources.tech.W3Standards enable
$./ferenda-build.py all all --downloadmax=50
$./ferenda-build.py all runserver &
$ open http://localhost:8000/

Note

(*) actually, it only downloads the 50 most recent of
each. Downloading, parsing, indexing and re-generating close to
7000 RFC documents takes several hours. In order to process all
documents, remove the downloadmax configuration
parameter/command line option, and be prepared to wait. You should
also set up an external triple store (see Triple stores) and
an external fulltext search engine (see Fulltext search engines).

Prerequisites

	Operating system

	Ferenda is tested and works on Unix, Mac OS and Windows.

	Python

	Version 2.6 or newer required, 3.4 recommended. The code base is
primarily developed with python 3, and is heavily dependent on all
forward compatibility features introduced in Python 2.6. Python
3.0 and 3.1 is not supported.

	Third-party libraries

	beautifulsoup4, rdflib, html5lib,
lxml, requests, whoosh, pyparsing, jsmin,
six and their respective requirements. If you install
ferenda using easy_install or pip they should be
installed automatically. If you’re working with a clone of the
source repository you can install them with a simple pip
install -r requirements.py3.txt (substitute with
requirements.py2.txt if you’re not yet using python 3).

	Command-line tools

	For some functionality, certain executables must be present and in
your $PATH:

	PDFReader requires pdftotext and
pdftohtml (from poppler [http://poppler.freedesktop.org/], version 0.21 or newer).
	The crop() method requires
convert (from ImageMagick [http://www.imagemagick.org/]).

	The convert_to_pdf parameter to
read() requires the soffice
binary from either OpenOffice or LibreOffice

	The ocr_lang parameter to
read() requires tesseract (from
tesseract-ocr [https://code.google.com/p/tesseract-ocr/]),
convert (see above) and tiffcp (from libtiff [http://www.libtiff.org/])

	WordReader requires antiword [http://www.winfield.demon.nl/] to handle old .doc files.

	TripleStore can perform some operations
(bulk up- and download) much faster if curl [http://curl.haxx.se/] is installed.

Once you have a large number of documents and metadata about those
documents, you’ll need a RDF triple store, either Sesame [http://www.openrdf.org/] (at least version 2.7) or Fuseki [http://jena.apache.org/documentation/serving_data/index.html] (at
least version 1.0). For document collections small enough to keep all
metadata in memory you can get by with only rdflib, using either a
Sqlite or a Berkely DB (aka Sleepycat/bsddb) backend. For further
information, see Triple stores.

Similarly, once you have a large collection of text (either many short
documents, or fewer long documents), you’ll need an fulltext search
engine to use the search feature (enabled by default). For small
document collections the embedded whoosh [https://bitbucket.org/mchaput/whoosh/wiki/Home] library is
used. Right now, ElasticSearch [http://www.elasticsearch.org/] is
the only supported external fulltext search engine.

As a rule of thumb, if your document collection contains over 100 000
RDF triples or 100 000 words, you should start thinking about setting
up an external triple store or a fulltext search engine. See
Fulltext search engines.

Installing

Ferenda should preferably be installed with pip [http://www.pip-installer.org/en/latest/installing.html] (in fact,
it’s the only method tested):

pip install ferenda

You should definitely consider installing ferenda in a virtualenv [http://www.virtualenv.org/en/latest/].

Note

If you want to use the Sleepycat/bsddb backend for storing RDF data
together with python 3, you need to install the bsddb3
module. Even if you’re using python 2 on Mac OS X, you might
need to install this module, as the built-in bsddb module often
has problems on this platform. It’s not automatically installed by
easy_install/pip as it has requirements of its own and is
not essential.

On Windows, we recommend using a binary distribution of
lxml. Unfortunately, at the time of writing, no such official
distribution is for Python 3.3 or later. However, the inofficial
distributions available at
http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml has been tested
with ferenda on python 3.3 and later, and seems to work great.

The binary distributions installs lxml into the system python
library path. To make lxml available for your virtualenv, use the
--system-site-packages command line switch when creating the
virtualenv.

Features

	Handles downloading, structural parsing and regeneration of large
document collections.

	Contains libraries to make reading of plain text, MS Word and PDF
documents (including scanned text) as easy as HTML.

	Uses established information standards like XHTML, XSLT, XML
namespaces, RDF and SPARQL as much as possible.

	Leverages your favourite python libraries: requests [http://docs.python-requests.org/en/latest/], beautifulsoup [http://www.crummy.com/software/BeautifulSoup/], rdflib [https://rdflib.readthedocs.org/en/latest/], lxml [http://lxml.de/], pyparsing [http://pyparsing.wikispaces.com/]
and whoosh [https://bitbucket.org/mchaput/whoosh/wiki/Home].

	Handle errors in upstream sources by creating one-off patch files
for individiual documents.

	Easy to write reference/citation parsers and run them on document
text.

	Documents in the same and other collections are automatically
cross-referenced.

	Uses caches and dependency management to avoid performing the same
work over and over.

	Once documents are downloaded and structured, you get a usable web
site with REST API, Atom feeds and search for free.

	Web site generation can create a set of static HTML pages for
offline use.

Next step

See First steps to set up a project and create your own simple
document repository.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

First steps

Ferenda can be used in a project-like manner with a command-line tool
(similar to how projects based on Django [https://www.djangoproject.com/], Sphinx [http://sphinx-doc.org/]
and Scrapy [http://scrapy.org] are used), or it can be used
programatically through a simple API. In this guide, we’ll primarily
be using the command-line tool, and then show how to achieve the same
thing using the API.

The first step is to create a project. Lets make a simple website that
contains published standards from W3C and IETF, called
“netstandards”. Ferenda installs a system-wide command-line tool
called ferenda-setup whose sole purpose is to create projects:

$ ferenda-setup netstandards
Prerequisites ok
Selected SQLITE as triplestore
Selected WHOOSH as search engine
Project created in netstandards
$ cd netstandards
$ ls
ferenda-build.py
ferenda.ini
wsgi.py

The three files created by ferenda-setup is another command line
tool (ferenda-build.py) used for management of the newly created
project, a WSGI application (wsgi.py, see The WSGI app) and a
configuration file (ferenda.ini). The default configuration file
specifies most, but not all, of the available configuration
parameters. See Configuration for a full list of the standard
configuration parameters.

Note

When using the API, you don’t create a project or deal with
configuration files in the same way. Instead, your client code is
responsible for keeping track of which docrepos to use, and
providing configuration when calling their methods.

Creating a Document repository class

Any document collection is handled by a
DocumentRepository class (or docrepo for
short), so our first task is to create a docrepo for W3C standards.

A docrepo class is responsible for downloading documents in a specific
document collection. These classes can inherit from
DocumentRepository, which amongst others provides
the method download() for
this. Since the details of how documents are made available on the web
differ greatly from collection to collection, you’ll often have to
override the default implementation, but in this particular case, it
suffices. The default implementation assumes that all documents are
available from a single index page, and that the URLs of the documents
follow a set pattern.

The W3C standards are set up just like that: All standards are
available at http://www.w3.org/TR/tr-status-all. There are a lot
of links to documents on that page, and not all of them are links to
recommended standards. A simple way to find only the recommended
standards is to see if the link follows the pattern
http://www.w3.org/TR/<year>/REC-<standardid>-<date>.

Creating a docrepo that is able to download all web
standards is then as simple as creating a subclass and setting three
class properties. Create this class in the current directory (or
anywhere else on your python path) and save it as w3cstandards.py

from ferenda import DocumentRepository

class W3CStandards(DocumentRepository):
 alias = "w3c"
 start_url = "http://www.w3.org/TR/tr-status-all"
 document_url_regex = "http://www.w3.org/TR/(?P<year>\d{4})/REC-(?P<basefile>.*)-(?P<date>\d+)"

The first property, alias, is
required for all docrepos and controls the alias used by the command
line tool for that docrepo, as well as the path where files are
stored, amongst other things. If your project has a large collection
of docrepos, it’s important that they all have unique aliases.

The other two properties are parameters which the default
implementation of download() uses in
order to find out which documents to
download. start_url is just a
simple regular URL, while
document_url_regex is a standard
re [http://docs.python.org/3/library/re.html#module-re] regex with named groups. The group named basefile has
special meaning, and will be used as a base for stored files and
elsewhere as a short identifier for the document. For example, the web
standard found at URL
http://www.w3.org/TR/2012/REC-rdf-plain-literal-20121211/ will have
the basefile rdf-plain-literal.

Using ferenda-build.py and registering docrepo classes

Next step is to enable our class. Like most tasks, this is done using
the command line tool present in your project directory. To register
the class (together with a short alias) in your ferenda.ini
configuration file, run the following:

$./ferenda-build.py w3cstandards.W3CStandards enable
22:16:26 root INFO Enabled class w3cstandards.W3CStandards (alias 'w3c')

This creates a new section in ferenda.ini that just looks like the
following:

[w3c]
class = w3cstandards.W3CStandards

From this point on, you can use the class name or the alias “w3c”
interchangably:

$./ferenda-build.py w3cstandards.W3CStandards status # verbose
22:16:27 root INFO w3cstandards.W3CStandards status finished in 0.010 sec
Status for document repository 'w3c' (w3cstandards.W3CStandards)
 download: None.
 parse: None.
 generated: None.

$./ferenda-build.py w3c status # terse, exactly the same result

Note

When using the API, there is no need (nor possibility) to register
docrepo classes. Your client code directly instantiates the
class(es) it uses and calls methods on them.

Downloading

To test the downloading capabilities of our class, you can run the
download method directly from the command line using the command line
tool:

$./ferenda-build.py w3c download
22:16:31 w3c INFO Downloading max 3 documents
22:16:32 w3c INFO emotionml: downloaded from http://www.w3.org/TR/2014/REC-emotionml-20140522/
22:16:33 w3c INFO MathML3: downloaded from http://www.w3.org/TR/2014/REC-MathML3-20140410/
22:16:33 w3c INFO xml-entity-names: downloaded from http://www.w3.org/TR/2014/REC-xml-entity-names-20140410/
and so on...

After a few minutes of downloading, the result is a bunch of files in
data/w3c/downloaded:

$ ls -1 data/w3c/downloaded
MathML3.html
MathML3.html.etag
emotionml.html
emotionml.html.etag
xml-entity-names.html
xml-entity-names.html.etag

Note

The .etag files are created in order to support Conditional
GET [http://en.wikipedia.org/wiki/HTTP_ETag], so that we don’t
waste our time or remote server bandwith by re-downloading
documents that hasn’t changed. They can be ignored and might go
away in future versions of Ferenda.

We can get a overview of the status of our docrepo using the
status command:

$./ferenda-build.py w3cstandards.W3CStandards status # verbose
22:16:27 root INFO w3cstandards.W3CStandards status finished in 0.010 sec
Status for document repository 'w3c' (w3cstandards.W3CStandards)
 download: None.
 parse: None.
 generated: None.

$./ferenda-build.py w3c status # terse, exactly the same result

Note

To do the same using the API:

from w3cstandards import W3CStandards
repo = W3CStandards()
repo.download()
repo.status()
or use repo.get_status() to get all status information in a nested dict

Finally, if the logging information scrolls by too quickly and you
want to read it again, take a look in the data/logs directory.
Each invocation of ferenda-build.py creates a new log file
containing the same information that is written to stdout.

Parsing

Let’s try the next step in the workflow, to parse one of the documents
we’ve downloaded.

$./ferenda-build.py w3c parse rdfa-core
22:16:45 w3c INFO rdfa-core: parse OK (4.863 sec)
22:16:45 root INFO w3c parse finished in 4.935 sec

By now, you might have realized that our command line tool generally
is called in the following manner:

$./ferenda-build.py <docrepo> <command> [argument(s)]

The parse command resulted in one new file being created in
data/w3c/parsed.

$ ls -1 data/w3c/parsed
rdfa-core.xhtml

And we can again use the status command to get a comprehensive
overview of our document repository.

$./ferenda-build.py w3c status
22:16:47 root INFO w3c status finished in 0.032 sec
Status for document repository 'w3c' (w3cstandards.W3CStandards)
 download: xml-entity-names, rdfa-core, emotionml... (1 more)
 parse: rdfa-core. Todo: xml-entity-names, emotionml, MathML3.
 generated: None. Todo: rdfa-core.

Note that by default, subsequent invocations of parse won’t actually
parse documents that don’t need parsing.

$./ferenda-build.py w3c parse rdfa-core
22:16:50 root INFO w3c parse finished in 0.019 sec

But during development, when you change the parsing code frequently,
you’ll need to override this through the --force flag (or set the
force parameter in ferenda.ini).

$./ferenda-build.py w3c parse rdfa-core --force
22:16:56 w3c INFO rdfa-core: parse OK (5.123 sec)
22:16:56 root INFO w3c parse finished in 5.166 sec

Note

To do the same using the API:

from w3cstandards import W3CStandards
repo = W3CStandards(force=True)
repo.parse("rdfa-core")

Note also that you can parse all downloaded documents through the
--all flag, and control logging verbosity by the --loglevel
flag.

$./ferenda-build.py w3c parse --all --loglevel=DEBUG
22:16:59 w3c DEBUG xml-entity-names: Starting
22:16:59 w3c DEBUG xml-entity-names: Created data/w3c/parsed/xml-entity-names.xhtml
22:17:00 w3c DEBUG xml-entity-names: 6 triples extracted to data/w3c/distilled/xml-entity-names.rdf
22:17:00 w3c INFO xml-entity-names: parse OK (0.717 sec)
22:17:00 w3c DEBUG emotionml: Starting
22:17:00 w3c DEBUG emotionml: Created data/w3c/parsed/emotionml.xhtml
22:17:01 w3c DEBUG emotionml: 11 triples extracted to data/w3c/distilled/emotionml.rdf
22:17:01 w3c INFO emotionml: parse OK (1.174 sec)
22:17:01 w3c DEBUG MathML3: Starting
22:17:01 w3c DEBUG MathML3: Created data/w3c/parsed/MathML3.xhtml
22:17:01 w3c DEBUG MathML3: 8 triples extracted to data/w3c/distilled/MathML3.rdf
22:17:01 w3c INFO MathML3: parse OK (0.332 sec)
22:17:01 root INFO w3c parse finished in 2.247 sec

Note

To do the same using the API:

import logging
from w3cstandards import W3CStandards
client code is responsible for setting the effective log level -- ferenda
just emits log messages, and depends on the caller to setup the logging
subsystem in an appropriate way
logging.getLogger().setLevel(logging.INFO)
repo = W3CStandards()
for basefile in repo.store.list_basefiles_for("parse"):
 # You you might want to try/catch the exception
 # ferenda.errors.ParseError or any of it's children here
 repo.parse(basefile)

Note that the API makes you explicitly list and iterate over any
available files. This is so that client code has the opportunity to
parallelize this work in an appropriate way.

If we take a look at the files created in data/w3c/distilled, we
see some metadata for each document. This metadata has been
automatically extracted from RDFa statements in the XHTML documents,
but is so far very spartan.

Now take a look at the files created in data/w3c/parsed. The
default implementation of parse() processes the DOM of the main
body of the document, but some tags and attribute that are used only
for formatting are stripped, such as <style> and <script>.

These documents have quite a lot of “boilerplate” text such as table
of contents and links to latest and previous versions which we’d like
to remove so that just the actual text is left (problem 1). And we’d
like to explicitly extract some parts of the document and represent
these as metadata for the document – for example the title, the
publication date, the authors/editors of the document and it’s
abstract, if available (problem 2).

Just like the default implementation of
download() allowed for some
customization using class variables, we can solve problem 1 by setting
two additional class variables:

 parse_content_selector="body"
 parse_filter_selectors=["div.toc", "div.head"]

The parse_content_selector
member specifies, using CSS selector syntax [http://www.w3.org/TR/CSS2/selector.html], the part of the document
which contains our main text. It defaults to "body", and can often
be set to ".content" (the first element that has a class=”content”
attribute”), "#main-text" (any element with the id
"main-text"), "article" (the first <article> element) or
similar. The
parse_filter_selectors is a
list of similar selectors, with the difference that all matching
elements are removed from the tree. In this case, we use it to remove
some boilerplate sections that often within the content specified by
parse_content_selector, but
which we don’t want to appear in the final result.

In order to solve problem 2, we can override one of the methods that
the default implementation of parse() calls:

 def parse_metadata_from_soup(self, soup, doc):
 from rdflib import Namespace
 from ferenda import Describer
 from ferenda import util
 import re
 DCTERMS = Namespace("http://purl.org/dc/terms/")
 FOAF = Namespace("http://xmlns.com/foaf/0.1/")
 d = Describer(doc.meta, doc.uri)
 d.rdftype(FOAF.Document)
 d.value(DCTERMS.title, soup.find("title").text, lang=doc.lang)
 d.value(DCTERMS.abstract, soup.find(True, "abstract"), lang=doc.lang)
 # find the issued date -- assume it's the first thing that looks
 # like a date on the form "22 August 2013"
 re_date = re.compile(r'(\d+ \w+ \d{4})')
 datenode = soup.find(text=re_date)
 datestr = re_date.search(datenode).group(1)
 d.value(DCTERMS.issued, util.strptime(datestr, "%d %B %Y"))
 editors = soup.find("dt", text=re.compile("Editors?:"))
 for editor in editors.find_next_siblings("dd"):
 editor_name = editor.text.strip().split(", ")[0]
 d.value(DCTERMS.editor, editor_name)

parse_metadata_from_soup() is
called with a document object and the parsed HTML document in the form
of a BeautifulSoup object. It is the responsibility of
parse_metadata_from_soup() to add
document-level metadata for this document, such as it’s title,
publication date, and similar. Note that
parse_metadata_from_soup() is run
before the
parse_content_selector and
parse_filter_selectors are
applied, so the BeautifulSoup object passed into it contains the
entire document.

Note

The selectors are passed to BeautifulSoup.select() [http://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors],
which supports a subset of the CSS selector syntax. If you stick
with simple tag, id and class-based selectors you should be fine.

Now, if you run parse --force again, both documents and metadata are
in better shape. Further down the line the value of properly extracted
metadata will become more obvious.

Republishing the parsed content

The XHTML contains metadata in RDFa format. As such, you can extract
all that metadata and put it into a triple store. The relate command
does this, as well as creating a full text index of all textual
content:

$./ferenda-build.py w3c relate --all
22:17:03 w3c INFO xml-entity-names: relate OK (0.618 sec)
22:17:04 w3c INFO rdfa-core: relate OK (1.542 sec)
22:17:06 w3c INFO emotionml: relate OK (1.647 sec)
22:17:08 w3c INFO MathML3: relate OK (1.604 sec)
22:17:08 w3c INFO Dumped 34 triples from context http://localhost:8000/dataset/w3c to data/w3c/distilled/dump.nt (0.007 sec)
22:17:08 root INFO w3c relate finished in 5.555 sec

The next step is to create a number of resource files (placed under
data/rsrc). These resource files include css and javascript files
for the new website we’re creating, as well as a xml configuration
file used by the XSLT transformation done by generate below:

$./ferenda-build.py w3c makeresources
22:17:08 root INFO Wrote data/rsrc/resources.xml
$ find data/rsrc -print
data/rsrc
data/rsrc/api
data/rsrc/api/common.json
data/rsrc/api/context.json
data/rsrc/api/terms.json
data/rsrc/css
data/rsrc/css/ferenda.css
data/rsrc/css/main.css
data/rsrc/css/normalize-1.1.3.css
data/rsrc/img
data/rsrc/img/navmenu-small-black.png
data/rsrc/img/navmenu.png
data/rsrc/img/search.png
data/rsrc/js
data/rsrc/js/ferenda.js
data/rsrc/js/jquery-1.10.2.js
data/rsrc/js/modernizr-2.6.3.js
data/rsrc/js/respond-1.3.0.js
data/rsrc/resources.xml

Note

It is possible to combine and minify both javascript and css files
using the combineresources option in the configuration file.

Running makeresources is needed for the final few steps.

$./ferenda-build.py w3c generate --all
22:17:14 w3c INFO xml-entity-names: generate OK (1.728 sec)
22:17:14 w3c INFO rdfa-core: generate OK (0.242 sec)
22:17:14 w3c INFO emotionml: generate OK (0.336 sec)
22:17:14 w3c INFO MathML3: generate OK (0.216 sec)
22:17:14 root INFO w3c generate finished in 2.535 sec

The generate command creates browser-ready HTML5 documents from
our structured XHTML documents, using our site’s navigation.

$./ferenda-build.py w3c toc
22:17:17 w3c INFO Created data/w3c/toc/dcterms_issued/2013.html
22:17:17 w3c INFO Created data/w3c/toc/dcterms_issued/2014.html
22:17:17 w3c INFO Created data/w3c/toc/dcterms_title/e.html
22:17:17 w3c INFO Created data/w3c/toc/dcterms_title/m.html
22:17:17 w3c INFO Created data/w3c/toc/dcterms_title/r.html
22:17:17 w3c INFO Created data/w3c/toc/dcterms_title/x.html
22:17:18 w3c INFO Created data/w3c/toc/index.html
22:17:18 root INFO w3c toc finished in 2.059 sec
$./ferenda-build.py w3c news
21:43:55 w3c INFO feed type/document: 4 entries
22:17:19 w3c INFO feed main: 4 entries
22:17:19 root INFO w3c news finished in 0.115 sec
$./ferenda-build.py w3c frontpage
22:17:21 root INFO frontpage: wrote data/index.html (0.112 sec)

The toc and feeds commands creates static files for general
indexes/tables of contents of all documents in our docrepo as well as
Atom feeds, and the frontpage command creates a suitable frontpage
for the site as a whole.

Note

To do all of the above using the API:

from ferenda import manager
from w3cstandards import W3CStandards
repo = W3CStandards()
for basefile in repo.store.list_basefiles_for("relate"):
 repo.relate(basefile)
manager.makeresources([repo], sitename="Standards", sitedescription="W3C standards, in a new form")
for basefile in repo.store.list_basefiles_for("generate"):
 repo.generate(basefile)
repo.toc()
repo.news()
manager.frontpage([repo])

Finally, to start a development web server and check out the finished
result:

$./ferenda-build.py w3c runserver
$ open http://localhost:8080/

Now you’ve created your own web site with structured documents. It
contains listings of all documents, feeds with updated documents (in
both HTML and Atom flavors), full text search, and an API. In order to
deploy your site, you can run it under Apache+mod_wsgi, ngnix+uWSGI,
Gunicorn or just about any WSGI capable web server, see The WSGI app.

Note

Using runserver() from the API does not
really make any sense. If your environment supports running WSGI
applications, see the above link for information about how to get
the ferenda WSGI application. Otherwise, the app can be run by any
standard WSGI host.

To keep it up-to-date whenever the W3C issues new standards, use the
following command:

$./ferenda-build.py w3c all
22:17:25 w3c INFO Downloading max 3 documents
22:17:25 root INFO w3cstandards.W3CStandards download finished in 2.648 sec
22:17:25 root INFO w3cstandards.W3CStandards parse finished in 0.019 sec
22:17:25 root INFO w3cstandards.W3CStandards relate: Nothing to do!
22:17:25 root INFO w3cstandards.W3CStandards relate finished in 0.025 sec
22:17:25 root INFO Wrote data/rsrc/resources.xml
22:17:29 root INFO w3cstandards.W3CStandards generate finished in 0.006 sec
22:17:32 root INFO w3cstandards.W3CStandards toc finished in 3.376 sec
22:17:34 w3c INFO feed type/document: 4 entries
22:17:32 w3c INFO feed main: 4 entries
22:17:32 root INFO w3cstandards.W3CStandards news finished in 0.063 sec
22:17:32 root INFO frontpage: wrote data/index.html (0.017 sec)

The “all” command is an alias that runs download, parse --all,
relate --all, generate --all, toc and feeds in
sequence.

Note

The API doesn’t have any corresponding method. Just run all of the
above code again. As long as you don’t pass the force=True
parameter when creating the docrepo instance, ferendas dependency
management should make sure that documents aren’t needlessly
re-parsed etc.

This 20-line example of a docrepo took a lot of shortcuts by depending
on the default implementation of the
download() and
parse() methods. Ferenda tries to
make it really to get something up and running quickly, and then
improving each step incrementally.

In the next section Creating your own document repositories we will take a closer look
at each of the six main steps (download, parse, relate,
generate, toc and news), including how to completely
replace the built-in methods. You can also take a look at the source
code for ferenda.sources.tech.W3Standards, which contains a more
complete (and substantially longer) implementation of
download(),
parse() and the others.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Creating your own document repositories

The next step is to do more substantial adjustments to the
download/parse/generate cycle. As the source for our next docrepo
we’ll use the collected RFCs [http://www.ietf.org/rfc.html],
as published by IETF [http://www.ietf.org/]. These documents are mainly
available in plain text format (formatted for printing on a line
printer), as is the document index itself. This means that we cannot rely
on the default implementation of download and parse. Furthermore, RFCs are
categorized and refer to each other using varying semantics. This metadata
can be captured, queried and used in a number of ways to present the RFC
collection in a better way.

Writing your own download implementation

The purpose of the download() method
is to fetch source documents from a remote source and store them
locally, possibly under different filenames but otherwise bit-for-bit
identical with how they were stored at the remote source (see
File storage for more information about how and where files are
stored locally).

The default implementation of
download() uses a small number of
methods and class variables to do the actual work. By selectively
overriding these, you can often avoid rewriting a complete
implementation of download().

A simple example

We’ll start out by creating a class similar to our W3C class in
First steps. All RFC documents are listed in the index file at
http://www.ietf.org/download/rfc-index.txt, while a individual
document (such as RFC 6725) are available at
http://tools.ietf.org/rfc/rfc6725.txt. Our first attempt will look
like this (save as rfcs.py)

import re
from datetime import datetime, date

import requests

from ferenda import DocumentRepository, TextReader
from ferenda import util
from ferenda.decorators import downloadmax

class RFCs(DocumentRepository):
 alias = "rfc"
 start_url = "http://www.ietf.org/download/rfc-index.txt"
 document_url_template = "http://tools.ietf.org/rfc/rfc%(basefile)s.txt"
 downloaded_suffix = ".txt"

And we’ll enable it and try to run it like before:

$./ferenda-build.py rfcs.RFCs enable
$./ferenda-build.py rfc download

This doesn’t work! This is because start page contains no actual HTML
links – it’s a plaintext file. We need to parse the index text file
to find out all available basefiles. In order to do that, we must
override download().

 def download(self):
 self.log.debug("download: Start at %s" % self.start_url)
 indextext = requests.get(self.start_url).text
 reader = TextReader(string=indextext) # see TextReader class
 iterator = reader.getiterator(reader.readparagraph)
 if not isinstance(self.config.downloadmax, (int, type(None))):
 self.config.downloadmax = int(self.config.downloadmax)

 for basefile in self.download_get_basefiles(iterator):
 self.download_single(basefile)

 @downloadmax
 def download_get_basefiles(self, source):
 for p in reversed(list(source)):
 if re.match("^(\d{4}) ",p): # looks like a RFC number
 if not "Not Issued." in p: # Skip RFC known to not exist
 basefile = str(int(p[:4])) # eg. '0822' -> '822'
 yield basefile

Since the RFC index is a plain text file, we use the
TextReader class, which contains a bunch of
functionality to make it easier to work with plain text files. In this
case, we’ll iterate through the file one paragraph at a time, and if
the paragraph starts with a four-digit number (and the number hasn’t
been marked “Not Issued.”) we’ll download it by calling
download_single().

Like the default implementation, we offload the main work to
download_single(), which will look
if the file exists on disk and only if not, attempt to download it. If
the --refresh parameter is provided, a conditional get [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] is
performed and only if the server says the document has changed, it is
re-downloaded.

Note

In many cases, the URL for the downloaded document is not easily
constructed from a basefile
identifier. download_single()
therefore takes a optional url argument. The above could be written
more verbosely like:

url = "http://tools.ietf.org/rfc/rfc%s.txt" % basefile
self.download_single(basefile, url)

In other cases, a document to be downloaded could consists of several
resources (eg. a HTML document with images, or a PDF document with the
actual content combined with a HTML document with document
metadata). For these cases, you need to override
download_single().

The main flow of the download process

The main flow is that the download()
method itself does some source-specific setup, which often include
downloading some sort of index or search results page. The location of
that index resource is given by the class variable
start_url.
download() then calls
download_get_basefiles() which
returns an iterator of basefiles.

For each basefile, download_single()
is called. This method is responsible for downloading everything
related to a single document. Most of the time, this is just a single
file, but can occasionally be a set of files (like a HTML document
with accompanying images, or a set of PDF files that conceptually is a
single document).

The default implementation of
download_single() assumes that a
document is just a single file, and calculates the URL of that
document by calling the remote_url()
method.

The default remote_url() method uses
the class variable
document_url_template. This string
template should be using string formatting and expect a variable
called basefile. The default implementation of
remote_url() can in other words only
be used if the URLs of the remote source are predictable and directly
based on the basefile.

Note

In many cases, the URL for the remote version of a document can be
impossible to calculate from the basefile only, but be readily
available from the main index page or search result page. For those
cases, download_get_basefiles()
should return a iterator that yields (basefile, url)
tuples. The default implementation of
download() handles this and uses
url as the second, optional argument to download_single.

Finally, the actual downloading of individual files is done by the
download_if_needed() method. As the
name implies, this method tries to avoid downloading anything from the
network if it’s not strictly needed. If there is a file in-place
already, a conditional GET is done (using the timestamp of the file
for a If-modified-since header, and an associated .etag file for a
If-none-match header). This avoids re-downloading the (potentially
large) file if it hasn’t changed.

To summarize: The main chain of calls looks something like this:

download
 start_url (class variable)
 download_get_basefiles (instancemethod) - iterator
 download_single (instancemethod)
 remote_url (instancemethod)
 document_url_template (class variable)
 download_if_needed (instancemethod)

These are the methods that you may override, and when you might want to do so:

	method
	Default behaviour
	Override when

	download
	Download the contents of
start_url and extracts all
links by lxml.html.iterlinks,
which are passed to
download_get_basefiles.
For each item that is returned,
call download_single.
	All your documents are not linked
from a single index page (i.e. paged
search results). In these cases, you
should override
download_get_basefiles as well
and make that method responsible for
fetching all pages of search results.

	download_get_basefiles
	Iterate through the (element,
attribute, link, url) tuples from
the source and examine if link
matches basefile_regex or if
url match document_url_regex.
If so, yield a
(text, url) tuple.
	The basefile/url extraction is more
complicated than what can be achieved
through the basefile_regex /
document_url_regex mechanism, or
when you’ve overridden download to
pass a different argument than a
link iterator. Note that you must
return an iterator by using the
yield statement for each basefile
found.

	download_single
	Calculates the url of the document
to download (or, if a URL is
provided, uses that), and calls
download_if_needed with that.
Afterwards, updates the
DocumentEntry of the document
to reflect source url and download
timestamps.
	The complete contents of your
document is contained in several
different files. In these cases, you
should start with the main one and
call download_if_needed for that,
then calculate urls and file paths
(using the attachment parameter to
store.downloaded_path) for each
additional file, then call
download_if_needed for each. Finally,
you must update the DocumentEntry
object.

	remote_url
	Calculates a URL from a basename
using document_url_template
	The rules for producing a URL from a
basefile is more complicated than
what string formatting can achieve.

	download_if_needed
	Downloads an individual URL to a
local file. Makes sure the local
file has the same timestamp as the
Last-modified header from the
server. If an older version of the
file is present, this can either
be archived (the default) or
overwritten.
	You really shouldn’t.

The optional basefile argument

During early stages of development, it’s often useful to just download
a single document, both in order to check out that download_single
works as it should, and to have sample documents for parse. When using
the ferenda-build.py tool, the download command can take a single
optional parameter, ie.:

./ferenda-build.py rfc download 6725

If provided, this parameter is passed to the download method as the
optional basefile parameter. The default implementation of download
checks if this parameter is provided, and if so, simply calls
download_single with that parameter, skipping the full download
procedure. If you’re overriding download, you should support this
usage, by starting your implementation with something like this:

def download(self, basefile=None):
 if basefile:
 return self.download_single(basefile)

 # the rest of your code

The downloadmax() decorator

As we saw in Introduction to Ferenda, the built-in docrepos support a
downloadmax configuration parameter. The effect of this parameter
is simply to interrupt the downloading process after a certain amount
of documents have been downloaded. This can be useful when doing
integration-type testing, or if you just want to make it easy for
someone else to try out your docrepo class. The separation between the
main download() method anbd the
download_get_basefiles() helper
method makes this easy – just add the
@downloadmax() to the latter. This
decorator reads the downloadmax configuration parameter (it also
looks for a FERENDA_DOWNLOADMAX environment variable) and if set,
limits the number of basefiles returned by
download_get_basefiles().

Writing your own parse implementation

The purpose of the
parse() method is to take
the downloaded file(s) for a particular document and parse it into a
structured document with proper metadata, both for the document as a
whole, but also for individual sections of the document.

 # In order to properly handle our RDF data, we need to tell
 # ferenda which namespaces we'll be using. These will be available
 # as rdflib.Namespace objects in the self.ns dict, which means you
 # can state that something is eg. a dcterms:title by using
 # self.ns['dcterms'].title. See
 # :py:data:`~ferenda.DocumentRepository.namespaces`
 namespaces = ('rdf', # always needed
 'dcterms', # title, identifier, etc
 'bibo', # Standard and DocumentPart classes, chapter prop
 'xsd', # datatypes
 'foaf', # rfcs are foaf:Documents for now
 ('rfc','http://example.org/ontology/rfc/')
)
 from rdflib import Namespace
 rdf_type = Namespace('http://example.org/ontology/rfc/').RFC

 from ferenda.decorators import managedparsing

 @managedparsing
 def parse(self, doc):
 # some very simple heuristic rules for determining
 # what an individual paragraph is

 def is_heading(p):
 # If it's on a single line and it isn't indented with spaces
 # it's probably a heading.
 if p.count("\n") == 0 and not p.startswith(" "):
 return True

 def is_pagebreak(p):
 # if it contains a form feed character, it represents a page break
 return "\f" in p

 # Parsing a document consists mainly of two parts:
 # 1: First we parse the body of text and store it in doc.body
 from ferenda.elements import Body, Preformatted, Title, Heading
 from ferenda import Describer
 reader = TextReader(self.store.downloaded_path(doc.basefile))

 # First paragraph of an RFC is always a header block
 header = reader.readparagraph()
 # Preformatted is a ferenda.elements class representing a
 # block of preformatted text. It is derived from the built-in
 # list type, and must thus be initialized with an iterable, in
 # this case a single-element list of strings. (Note: if you
 # try to initialize it with a string, because strings are
 # iterables as well, you'll end up with a list where each
 # character in the string is an element, which is not what you
 # want).
 preheader = Preformatted([header])
 # Doc.body is a ferenda.elements.Body class, which is also
 # is derived from list, so it has (amongst others) the append
 # method. We build our document by adding to this root
 # element.
 doc.body.append(preheader)

 # Second paragraph is always the title, and we don't include
 # this in the body of the document, since we'll add it to the
 # medata -- once is enough
 title = reader.readparagraph()

 # After that, just iterate over the document and guess what
 # everything is. TextReader.getiterator is useful for
 # iterating through a text in other chunks than single lines
 for para in reader.getiterator(reader.readparagraph):
 if is_heading(para):
 # Heading is yet another of these ferenda.elements
 # classes.
 doc.body.append(Heading([para]))
 elif is_pagebreak(para):
 # Just drop these remnants of a page-and-paper-based past
 pass
 else:
 # If we don't know that it's something else, it's a
 # preformatted section (the safest bet for RFC text).
 doc.body.append(Preformatted([para]))

 # 2: Then we create metadata for the document and store it in
 # doc.meta (in this case using the convenience
 # ferenda.Describer class).

 desc = Describer(doc.meta, doc.uri)

 # Set the rdf:type of the document
 desc.rdftype(self.rdf_type)

 # Set the title we've captured as the dcterms:title of the document and
 # specify that it is in English
 desc.value(self.ns['dcterms'].title, util.normalize_space(title), lang="en")

 # Construct the dcterms:identifier (eg "RFC 6991") for this document from the basefile
 desc.value(self.ns['dcterms'].identifier, "RFC " + doc.basefile)

 # find and convert the publication date in the header to a datetime
 # object, and set it as the dcterms:issued date for the document
 re_date = re.compile("(January|February|March|April|May|June|July|August|September|October|November|December) (\d{4})").search
 # This is a context manager that temporarily sets the system
 # locale to the "C" locale in order to be able to use strptime
 # with a string on the form "August 2013", even though the
 # system may use another locale.
 dt_match = re_date(header)
 if dt_match:
 with util.c_locale():
 dt = datetime.strptime(re_date(header).group(0), "%B %Y")
 pubdate = date(dt.year,dt.month,dt.day)
 # Note that using some python types (cf. datetime.date)
 # results in a datatyped RDF literal, ie in this case
 # <http://localhost:8000/res/rfc/6994> dcterms:issued "2013-08-01"^^xsd:date
 desc.value(self.ns['dcterms'].issued, pubdate)

 # find any older RFCs that this document updates or obsoletes
 obsoletes = re.search("^Obsoletes: ([\d+,]+)", header, re.MULTILINE)
 updates = re.search("^Updates: ([\d+,]+)", header, re.MULTILINE)

 # Find the category of this RFC, store it as dcterms:subject
 cat_match = re.search("^Category: ([\w]+?)(|$)", header, re.MULTILINE)
 if cat_match:
 desc.value(self.ns['dcterms'].subject, cat_match.group(1))

 for predicate, matches in ((self.ns['rfc'].updates, updates),
 (self.ns['rfc'].obsoletes, obsoletes)):
 if matches is None:
 continue
 # add references between this document and these older rfcs,
 # using either rfc:updates or rfc:obsoletes
 for match in matches.group(1).strip().split(", "):
 uri = self.canonical_uri(match)
 # Note that this uses our own unofficial
 # namespace/vocabulary
 # http://example.org/ontology/rfc/
 desc.rel(predicate, uri)

 # And now we're done. We don't need to return anything as
 # we've modified the Document object that was passed to
 # us. The calling code will serialize this modified object to
 # XHTML and RDF and store it on disk

This implementation builds a very simple object model of a RFC
document, which is serialized to a XHTML1.1+RDFa document by the
managedparsing() decorator. If you
run it (by calling ferenda-build.py rfc parse --all) after having
downloaded the rfc documents, the result will be a set of documents in
data/rfc/parsed, and a set of RDF files in
data/rfc/distilled. Take a look at them! The above might appear to
be a lot of code, but it also accomplishes much. Furthermore, it
should be obvious how to extend it, for instance to create more
metadata from the fields in the header (such as capturing the RFC
category, the publishing party, the authors etc) and better semantic
representation of the body (such as marking up regular paragraphs,
line drawings, bulleted lists, definition lists, EBNF definitions and
so on).

Next up, we’ll extend this implementation in two ways: First by
representing the nested nature of the sections and subsections in the
documents, secondly by finding and linking citations/references to
other parts of the text or other RFCs in full.

Note

How does ./ferenda-build.py rfc parse --all work? It calls
list_basefiles_for() with the
argument parse, which lists all downloaded files, and extracts
the basefile for each of them, then calls parse for each in turn.

Handling document structure

The main text of a RFC is structured into sections, which may contain
subsections, which in turn can contain subsubsections. The start of
each section is easy to identify, which means we can build a model of
this structure by extending our parse method with relatively few lines:

 from ferenda.elements import Section, Subsection, Subsubsection

 # More heuristic rules: Section headers start at the beginning
 # of a line and are numbered. Subsections and subsubsections
 # have dotted numbers, optionally with a trailing period, ie
 # '9.2.' or '11.3.1'
 def is_section(p):
 return re.match(r"\d+\.? +[A-Z]", p)

 def is_subsection(p):
 return re.match(r"\d+\.\d+\.? +[A-Z]", p)

 def is_subsubsection(p):
 return re.match(r"\d+\.\d+\.\d+\.? +[A-Z]", p)

 def split_sectionheader(p):
 # returns a tuple of title, ordinal, identifier
 ordinal, title = p.split(" ",1)
 ordinal = ordinal.strip(".")
 return title.strip(), ordinal, "RFC %s, section %s" % (doc.basefile, ordinal)

 # Use a list as a simple stack to keep track of the nesting
 # depth of a document. Every time we create a Section,
 # Subsection or Subsubsection object, we push it onto the
 # stack (and clear the stack down to the appropriate nesting
 # depth). Every time we create some other object, we append it
 # to whatever object is at the top of the stack. As your rules
 # for representing the nesting of structure become more
 # complicated, you might want to use the
 # :class:`~ferenda.FSMParser` class, which lets you define
 # heuristic rules (recognizers), states and transitions, and
 # takes care of putting your structure together.
 stack = [doc.body]

 for para in reader.getiterator(reader.readparagraph):
 if is_section(para):
 title, ordinal, identifier = split_sectionheader(para)
 s = Section(title=title, ordinal=ordinal, identifier=identifier)
 stack[1:] = [] # clear all but bottom element
 stack[0].append(s) # add new section to body
 stack.append(s) # push new section on top of stack
 elif is_subsection(para):
 title, ordinal, identifier = split_sectionheader(para)
 s = Subsection(title=title, ordinal=ordinal, identifier=identifier)
 stack[2:] = [] # clear all but bottom two elements
 stack[1].append(s) # add new subsection to current section
 stack.append(s)
 elif is_subsubsection(para):
 title, ordinal, identifier = split_sectionheader(para)
 s = Subsubsection(title=title, ordinal=ordinal, identifier=identifier)
 stack[3:] = [] # clear all but bottom three
 stack[-1].append(s) # add new subsubsection to current subsection
 stack.append(s)
 elif is_heading(para):
 stack[-1].append(Heading([para]))
 elif is_pagebreak(para):
 pass
 else:
 pre = Preformatted([para])
 stack[-1].append(pre)

This enhances parse so that instead of outputting a single long list of elements directly under body:

<h1>2. Overview</h1>
<h1>2.1. Date, Location, and Participants</h1>
<pre>
 The second ForCES interoperability test meeting was held by the IETF
 ForCES Working Group on February 24-25, 2011...
</pre>
<h1>2.2. Testbed Configuration</h1>
<h1>2.2.1. Participants' Access</h1>
<pre>
 NTT and ZJSU were physically present for the testing at the Internet
 Technology Lab (ITL) at Zhejiang Gongshang University in China.
</pre>

...we have a properly nested element structure, as well as much more
metadata represented in RDFa form:

<div class="section" property="dcterms:title" content=" Overview"
 typeof="bibo:DocumentPart" about="http://localhost:8000/res/rfc/6984#S2.">
 <span property="bibo:chapter" content="2."
 about="http://localhost:8000/res/rfc/6984#S2."/>
 <div class="subsection" property="dcterms:title" content=" Date, Location, and Participants"
 typeof="bibo:DocumentPart" about="http://localhost:8000/res/rfc/6984#S2.1.">
 <span property="bibo:chapter" content="2.1."
 about="http://localhost:8000/res/rfc/6984#S2.1."/>
 <pre>
 The second ForCES interoperability test meeting was held by the
 IETF ForCES Working Group on February 24-25, 2011...
 </pre>
 <div class="subsection" property="dcterms:title" content=" Testbed Configuration"
 typeof="bibo:DocumentPart" about="http://localhost:8000/res/rfc/6984#S2.2.">
 <span property="bibo:chapter" content="2.2."
 about="http://localhost:8000/res/rfc/6984#S2.2."/>
 <div class="subsubsection" property="dcterms:title" content=" Participants' Access"
 typeof="bibo:DocumentPart" about="http://localhost:8000/res/rfc/6984#S2.2.1.">
 <span content="2.2.1." about="http://localhost:8000/res/rfc/6984#S2.2.1."
 property="bibo:chapter"/>
 <pre>
 NTT and ZJSU were physically present for the testing at the
 Internet Technology Lab (ITL) at Zhejiang Gongshang
 University in China...
 </pre>
 </div>
 </div>
 </div>
</div>

Note in particular that every section and subsection now has a defined
URI (in the @about attribute). This will be useful later.

Handling citations in text

References / citations in RFC text is often of the form "are to be
interpreted as described in [RFC2119]" (for citations to other RFCs
in whole), "as described in Section 7.1" (for citations to other
parts of the current document) or "Section 2.4 of [RFC2045] says"
(for citations to a specific part in another document). We can define
a simple grammar for these citations using pyparsing [http://pyparsing.wikispaces.com/]:

 from pyparsing import Word, CaselessLiteral, nums
 section_citation = (CaselessLiteral("section") + Word(nums+".").setResultsName("Sec")).setResultsName("SecRef")
 rfc_citation = ("[RFC" + Word(nums).setResultsName("RFC") + "]").setResultsName("RFCRef")
 section_rfc_citation = (section_citation + "of" + rfc_citation).setResultsName("SecRFCRef")

The above productions have named results for different parts of the
citation, ie a citation of the form “Section 2.4 of [RFC2045] says”
will result in the named matches Sec = “2.4” and RFC = “2045”. The
CitationParser class can be used to extract these matches into a dict,
which is then passed to a uri formatter function like:

 def rfc_uriformatter(parts):
 uri = ""
 if 'RFC' in parts:
 uri += self.canonical_uri(parts['RFC'].lstrip("0"))
 if 'Sec' in parts:
 uri += "#S" + parts['Sec']
 return uri

And to initialize a citation parser and have it run over the entire
structured text, finding citations and formatting them into URIs as we
go along, just use:

 from ferenda import CitationParser, URIFormatter
 citparser = CitationParser(section_rfc_citation,
 section_citation,
 rfc_citation)
 citparser.set_formatter(URIFormatter(("SecRFCRef", rfc_uriformatter),
 ("SecRef", rfc_uriformatter),
 ("RFCRef", rfc_uriformatter)))
 citparser.parse_recursive(doc.body)

The result of these lines is that the following block of plain text:

<pre>
 The behavior recommended in Section 2.5 is in line with generic error
 treatment during the IKE_SA_INIT exchange, per Section 2.21.1 of
 [RFC5996].
</pre>

...transform into this hyperlinked text:

<pre>
 The behavior recommended in <a href="#S2.5"
 rel="dcterms:references">Section 2.5 is in line with generic
 error treatment during the IKE_SA_INIT exchange, per <a
 href="http://localhost:8000/res/rfc/5996#S2.21.1"
 rel="dcterms:references">Section 2.21.1 of [RFC5996].
</pre>

Note

The uri formatting function uses
canonical_uri() to create the
base URI for each external reference. Proper design of the URIs
you’ll be using is a big topic, and you should think through what
URIs you want to use for your documents and their parts. Ferenda
provides a default implementation to create URIs from document
properties, but you might want to override this.

The parse step is probably the part of your application which you’ll
spend the most time developing. You can start simple (like above) and
then incrementally improve the end result by processing more metadata,
model the semantic document structure better, and handle in-line
references in text more correctly. See also Building structured documents,
Parsing document structure and Citation parsing.

Calling relate()

The purpose of the relate()
method is to make sure that all document data and metadata is properly
stored and indexed, so that it can be easily retrieved in later
steps. This consists of three steps: Loading all RDF metadata into a
triplestore, loading all document content into a full text index, and
making note of how documents refer to each other.

Since the output of parse is well structured XHTML+RDFa documents
that, on the surface level, do not differ much from docrepo to
docrepo, you should not have to change anything about this step.

Note

You might want to configure whether to load everything into a
fulltext index – this operation takes a lot of time, and this
index is not even used if createing a static site. You do this by
setting fulltextindex to False, either in ferenda.ini or on
the command line:

./ferenda-build.py rfc relate --all --fulltextindex=False

Calling makeresources()

This method needs to run at some point before generate and the rest of
the methods. Unlike the other methods described above and below, which
are run for one docrepo at a time, this method is run for the project
as a whole (that is why it is a function in
ferenda.manager instead of a
DocumentRepository method). It constructs a set of
site-wide resources such as minified js and css files, and
configuration for the site-wide XSLT template. It is easy to run using
the command-line tool:

$./ferenda-build.py all makeresources

If you use the API, you need to provide a list of instances of the
docrepos that you’re using, and the path to where generated resources
should be stored:

from ferenda.manager import makeresources
config = {'datadir':'mydata'}
myrepos = [RFC(**config), W3C(**config]
makeresources(myrepos,'mydata/myresources')

Customizing generate()

The purpose of the
generate() method is to
create new browser-ready HTML files from the structured XHTML+RDFa
files created by
parse(). Unlike the files
created by parse(), these
files will contain site-branded headers, footers, navigation menus and
such. They will also contain related content not directly found in the
parsed files themselves: Sectioned documents will have a
automatically-generated table of contents, and other documents that
refer to a particular document will be listed in a sidebar in that
document. If the references are made to individual sections, there
will be sidebars for all such referenced sections.

The default implementation does this in two steps. In the first,
prep_annotation_file()
fetches metadata about other documents that relates to the document to
be generated into an annotation file. In the second,
Transformer runs an
XSLT transformation on the source file (which sources the annotation
file and a configuration file created by
makeresources()) in order to create the
browser-ready HTML file.

You should not need to override the general
generate() method, but you might
want to control how the annotation file and the XSLT transformation is
done.

Getting annotations

The prep_annotation_file() step is
driven by a SPARQL construct query [http://www.w3.org/TR/rdf-sparql-query/#construct]. The default
query fetches metadata about every other document that refers to the
document (or sections thereof) you’re generating, using the
dcterms:references predicate. By setting the class variable
sparql_annotations to the file
name of SPARQL query file of your choice, you can override this query.

Since our metadata contains more specialized statements on how
document refer to each other, in the form of rfc:updates and
rfc:obsoletes statements, we want a query that’ll fetch this
metadata as well. When we query for metadata about a particular
document, we want to know if there is any other document that updates
or obsoletes this document. Using a CONSTRUCT query, we create
rfc:isUpdatedBy and rfc:isObsoletedBy references to such
documents.

 sparql_annotations = "rfc-annotations.rq"

The contents of rfc-annotations.rq, placed in the current
directory, should be:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX bibo: <http://purl.org/ontology/bibo/>
PREFIX rfc: <http://example.org/ontology/rfc/>

CONSTRUCT {?s ?p ?o .
 <%(uri)s> rfc:isObsoletedBy ?obsoleter .
	 <%(uri)s> rfc:isUpdatedBy ?updater .
	 <%(uri)s> dcterms:isReferencedBy ?referencer .
	 }
WHERE
{
 # get all literal metadata where the document is the subject
 { ?s ?p ?o .
 # FILTER(strstarts(str(?s), "%(uri)s"))
 FILTER(?s = <%(uri)s> && !isUri(?o))
 }
 UNION
 # get all metadata (except unrelated dcterms:references) about
 # resources that dcterms:references the document or any of its
 # sub-resources.
 { ?s dcterms:references+ <%(uri)s> ;
 ?p ?o .
 BIND(?s as ?referencer)
 FILTER(?p != dcterms:references || strstarts(str(?o), "%(uri)s"))
 }
 UNION
 # get all metadata (except dcterms:references) about any resource that
 # rfc:updates or rfc:obsolets the document
 { ?s ?x <%(uri)s> ;
 ?p ?o .
 FILTER(?x in (rfc:updates, rfc:obsoletes) && ?p != dcterms:references)
 }
 # finally, bind obsoleting and updating resources to new variables for
 # use in the CONSTRUCT clause
 UNION { ?obsoleter rfc:obsoletes <%(uri)s> . }
 UNION { ?updater rfc:updates <%(uri)s> . }
}

Note that %(uri)s will be replaced with the URI for the document
we’re querying about.

Now, when querying the triplestore for metadata about RFC 6021, the
(abbreviated) result is:

<graph xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:rfc="http://example.org/ontology/rfc/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <resource uri="http://localhost:8000/res/rfc/6021">
 <rfc:isObsoletedBy ref="http://localhost:8000/res/rfc/6991"/>
 <dcterms:published fmt="datatype">
 <date xmlns="http://www.w3.org/2001/XMLSchema#">2010-10-01</date>
 </dcterms:published>
 <dcterms:title xml:lang="en">Common YANG Data Types</dcterms:title>
 </resource>
 <resource uri="http://localhost:8000/res/rfc/6991">
 <a><rfc:RFC/>
 <rfc:obsoletes ref="http://localhost:8000/res/rfc/6021"/>
 <dcterms:published fmt="datatype">
 <date xmlns="http://www.w3.org/2001/XMLSchema#">2013-07-01</date>
 </dcterms:published>
 <dcterms:title xml:lang="en">Common YANG Data Types</dcterms:title>
 </resource>
</graph>

Note

You can find this file in data/rfc/annotations/6021.grit.xml. It’s
in the Grit [http://code.google.com/p/oort/wiki/Grit] format for
easy inclusion in XSLT processing.

Even if you’re not familiar with the format, or with RDF in general,
you can see that it contains information about two resources: first
the document we’ve queried about (RFC 6021), then the document that
obsoletes the same document (RFC 6991).

Note

If you’re coming from a relational database/SQL background, it can
be a little difficult to come to grips with graph databases and
SPARQL. The book “Learning SPARQL” by Bob DuCharme is highly
recommended.

Transforming to HTML

The Transformer step is driven by a XSLT
stylesheet. The default stylesheet uses a site-wide configuration file
(created by makeresources()) for things like
site name and top-level navigation, and lists the document content,
section by section, alongside of other documents that contains
references (in the form of dcterms:references) for each section. The
SPARQL query and the XSLT stylesheet often goes hand in hand – if
your stylesheet needs a certain piece of data, the query must be
adjusted to fetch it. By setting he class variable
xslt_template in the same way as
you did for the SPARQL query, you can override the default.

 xslt_template = "rfc.xsl"

The contents of rfc.xsl, placed in the current
directory, should be:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
		xmlns:xhtml="http://www.w3.org/1999/xhtml"
		xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
		xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
		xmlns:dcterms="http://purl.org/dc/terms/"
		xmlns:rfc="http://example.org/ontology/rfc/"
		xml:space="preserve"
		exclude-result-prefixes="xhtml rdf">

 <xsl:include href="base.xsl"/>

 <!-- Implementations of templates called by base.xsl -->
 <xsl:template name="headtitle"><xsl:value-of select="//xhtml:title"/> | <xsl:value-of select="$configuration/sitename"/></xsl:template>
 <xsl:template name="metarobots"/>
 <xsl:template name="linkalternate"/>
 <xsl:template name="headmetadata"/>
 <xsl:template name="bodyclass">rfc</xsl:template>
 <xsl:template name="pagetitle">
 <h1><xsl:value-of select="../xhtml:head/xhtml:title"/></h1>
 </xsl:template>

 <xsl:template match="xhtml:a"><xsl:value-of select="."/></xsl:template>

 <xsl:template match="xhtml:pre[1]">
 <pre><xsl:apply-templates/>
 </pre>
 <xsl:if test="count(ancestor::*) = 2">
 <xsl:call-template name="aside-annotations">
	<xsl:with-param name="uri" select="../@about"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:template>

 <!-- everything that has an @about attribute, i.e. _is_ something
 (with a URI) gets a <section> with an <aside> for inbound links etc -->
 <xsl:template match="xhtml:div[@about]">

 <div class="section-wrapper" about="{@about}"><!-- needed? -->
 <section id="{substring-after(@about,'#')}">
	<xsl:variable name="sectionheading"><xsl:if test="xhtml:span[@property='bibo:chapter']/@content"><xsl:value-of select="xhtml:span[@property='bibo:chapter']/@content"/>. </xsl:if><xsl:value-of select="@content"/></xsl:variable>
	<xsl:if test="count(ancestor::*) = 2">
	 <h2><xsl:value-of select="$sectionheading"/></h2>
	</xsl:if>
	<xsl:if test="count(ancestor::*) = 3">
	 <h3><xsl:value-of select="$sectionheading"/></h3>
	</xsl:if>
	<xsl:if test="count(ancestor::*) = 4">
	 <h4><xsl:value-of select="$sectionheading"/></h4>
	</xsl:if>
	<xsl:apply-templates select="*[not(@about)]"/>
 </section>
 <xsl:call-template name="aside-annotations">
	<xsl:with-param name="uri" select="@about"/>
 </xsl:call-template>
 </div>
 <xsl:apply-templates select="xhtml:div[@about]"/>
 </xsl:template>

 <!-- remove spans which only purpose is to contain RDFa data -->
 <xsl:template match="xhtml:span[@property and @content and not(text())]"/>

 <!-- construct the side navigation -->
 <xsl:template match="xhtml:div[@about]" mode="toc">
 <xsl:if test="xhtml:span/@content"><xsl:value-of select="xhtml:span[@property='bibo:chapter']/@content"/>. </xsl:if><xsl:value-of select="@content"/><xsl:if test="xhtml:div[@about]">
 <xsl:apply-templates mode="toc"/>
 </xsl:if>
 </xsl:template>

 <!-- named template called from other templates which match
 xhtml:div[@about] and pre[1] above, and which creates -->
 <xsl:template name="aside-annotations">
 <xsl:param name="uri"/>
 <xsl:if test="$annotations/resource[@uri=$uri]/dcterms:isReferencedBy">
 <aside class="annotations">
	<h2>References to <xsl:value-of select="$annotations/resource[@uri=$uri]/dcterms:identifier"/></h2>
	<xsl:for-each select="$annotations/resource[@uri=$uri]/rfc:isObsoletedBy">
	 <xsl:variable name="referencing" select="@ref"/>
	 Obsoleted by
	
	 <xsl:value-of select="$annotations/resource[@uri=$referencing]/dcterms:identifier"/>
	

	</xsl:for-each>
	<xsl:for-each select="$annotations/resource[@uri=$uri]/rfc:isUpdatedBy">
	 <xsl:variable name="referencing" select="@ref"/>
	 Updated by
	
	 <xsl:value-of select="$annotations/resource[@uri=$referencing]/dcterms:identifier"/>
	

	</xsl:for-each>
	<xsl:for-each select="$annotations/resource[@uri=$uri]/dcterms:isReferencedBy">
	 <xsl:variable name="referencing" select="@ref"/>
	 Referenced by
	
	 <xsl:value-of select="$annotations/resource[@uri=$referencing]/dcterms:identifier"/>
	

	</xsl:for-each>
 </aside>
 </xsl:if>
 </xsl:template>

 <!-- default template: translate everything from whatever namespace
 it's in (usually the XHTML1.1 NS) into the default namespace
 -->
 <xsl:template match="*"><xsl:element name="{local-name(.)}"><xsl:apply-templates select="node()"/></xsl:element></xsl:template>

 <!-- default template for toc handling: do nothing -->
 <xsl:template match="@*|node()" mode="toc"/>

</xsl:stylesheet>

This XSLT stylesheet depends on base.xsl (which resides in
ferenda/res/xsl in the source distribution of ferenda – take a
look if you want to know how everything fits together). The main
responsibility of this stylesheet is to format individual elements of
the document body.

base.xsl takes care of the main chrome of the page, and it has a
default implementation (that basically transforms everything from
XHTML1.1 to HTML5, and removes some RDFa-only elements). It also loads
and provides the annotation file in the global variable
$annotations. The above XSLT stylesheet uses this to fetch information
about referencing documents. In particular, when processing an older
document, it lists if later documents have updated or obsoleted it
(see the named template aside-annotations).

You might notice that this XSLT template flattens the nested structure
of sections which we spent so much effort to create in the parse
step. This is to make it easier to put up the aside boxes next to each
part of the document, independent of the nesting level.

Note

While both the SPARQL query and the XSLT stylesheet might look
complicated (and unless you’re a RDF/XSL expert, they are...), most
of the time you can get a good result using the default generic
query and stylesheet.

Customizing toc()

The purpose of the toc()
method is to create a set of pages that acts as tables of contents for
all documents in your docrepo. For large document collections there
are often several different ways of creating such tables, eg. sorted
by title, publication date, document status, author and similar. The
pages uses the same site-branding,headers, footers, navigation menus
etc used by generate().

The default implementation is generic enough to handle most cases, but
you’ll have to override other methods which it calls, primarily
facets() and
toc_item(). These methods
depend on the metadata you’ve created by your parse implementation,
but in the simplest cases it’s enough to specify that you want one set
of pages organized by the dcterms:title of each document
(alphabetically sorted) and another by dcterms:issued
(numerically/calendarically sorted). The default implementation does
exactly this.

In our case, we wish to create four kinds of sorting: By identifier
(RFC number), by date of issue, by title and by category. These map
directly to four kinds of metadata that we’ve stored about each and
every document. By overriding
facets() we can specify these four
facets, aspects of documents used for grouping and sorting.

 def facets(self):
 from ferenda import Facet
 return [Facet(self.ns['dcterms'].title),
 Facet(self.ns['dcterms'].issued),
 Facet(self.ns['dcterms'].subject),
 Facet(self.ns['dcterms'].identifier)]

After running toc with this change, you can see that three sets of
index pages are created. By default, the dcterms:identifier
predicate isn’t used for the TOC pages, as it’s often derived from the
document title. Furthermore, you’ll get some error messages along the
lines of “Best Current Practice does not look like a valid URI”, which
is because the dcterms:subject predicate normally should have URIs
as values, and we are using plain string literals.

We can fix both these problems by customizing our facet objects a
little. We specify that we wish to use dcterms:identifier as a TOC
facet, and provide a simple method to group RFCs by their identifier
in groups of 100, ie one page for RFC 1-99, another for RFC 100-199,
and so on. We also specify that we expect our dcterms:subject
values to be plain strings.

 def facets(self):
 def select_rfcnum(row, binding, resource_graph):
 # "RFC 6998" -> "6900"
 return row[binding][4:-2] + "00"
 from ferenda import Facet
 return [Facet(self.ns['dcterms'].title),
 Facet(self.ns['dcterms'].issued),
 Facet(self.ns['dcterms'].subject,
 selector=Facet.defaultselector,
 identificator=Facet.defaultselector,
 key=Facet.defaultselector),
 Facet(self.ns['dcterms'].identifier,
 use_for_toc=True,
 selector=select_rfcnum,
 pagetitle="RFC %(selected)s00-%(selected)s99")]

The above code gives some example of how Facet
objects can be configured. However, a Facet
object does not control how each individual document is listed on a
toc page. The default formatting just lists the title of the document,
linked to the document in question. For RFCs, who mainly is referenced
using their RFC number rather than their title, we’d like to add the
RFC number in this display. This is done by overriding
toc_item().

 def toc_item(self, binding, row):
 from ferenda.elements import Link
 return [row['dcterms_identifier'] + ": ",
 Link(row['dcterms_title'],
 uri=row['uri'])]

Se also Customizing the table(s) of content and Grouping documents with facets.

Customizing news()

The purpose of news(),
the next to final step, is to provide a set of news feeds for your document
repository.

The default implementation gives you one single news feed for all
documents in your docrepo, and creates both browser-ready HTML (using
the same headers, footers, navigation menus etc used by
generate()) and Atom
syndication format [http://www.ietf.org/rfc/rfc4287.txt] files.

The facets you’ve defined for your docrepo are re-used to create news
feeds for eg. all documents published by a particular entity, or all
documents of a certain type. Only facet objects which has the
use_for_feed property set to a truthy value are used to construct
newsfeeds.

In this example, we adjust the facet based on dcterms:subject so
that it can be used for newsfeed generation.

 def facets(self):
 def select_rfcnum(row, binding, resource_graph):
 # "RFC 6998" -> "6900"
 return row[binding][4:-2] + "00"
 from ferenda import Facet
 return [Facet(self.ns['dcterms'].title),
 Facet(self.ns['dcterms'].issued),
 Facet(self.ns['dcterms'].subject,
 selector=Facet.defaultselector,
 identificator=Facet.defaultidentificator,
 key=Facet.defaultselector,
 use_for_feed=True),
 Facet(self.ns['dcterms'].identifier,
 use_for_toc=True,
 selector=select_rfcnum,
 pagetitle="RFC %(selected)s00-%(selected)s99")]

When running news, this will create five different atom feeds
(which are mirrored as HTML pages) under data/rfc/news: One
containing all documents, and four others that contain documents in a
particular category (eg having a particular dcterms:subject value.

Note

As you can see, the resulting HTML pages are a little rough around
the edges. Also, there isn’t currently any way of discovering the
Atom feeds or HTML pages from the main site – you need to know the
URLs. This will all be fixed in due time.

Se also Customizing the news feeds.

Customizing frontpage()

Finally, frontpage() creates a front page for
your entire site with content from the different docrepos. Each
docrepos frontpage_content() method
will be called, and should return a XHTML fragment with information
about the repository and it’s content. Below is a simple example that
uses functionality we’ve used in other contexts to create a list of
the five latest documents, as well as a total count of documents.

 def frontpage_content(self, primary=False):
 from rdflib import URIRef, Graph
 from itertools import islice
 items = ""
 for entry in islice(self.news_entries(),5):
 graph = Graph()
 with self.store.open_distilled(entry.basefile) as fp:
 graph.parse(data=fp.read())
 data = {'identifier': graph.value(URIRef(entry.id), self.ns['dcterms'].identifier).toPython(),
 'uri': entry.id,
 'title': entry.title}
 items += '%(identifier)s %(title)s' % data
 return ("""<h2>Request for comments</h2>
 <p>A complete archive of RFCs in Linked Data form. Contains %(doccount)s documents.</p>
 <p>Latest 5 documents:</p>

 %(items)s
 """ % {'uri':self.dataset_uri(),
 'items': items,
 'doccount': len(list(self.store.list_basefiles_for("_postgenerate")))})

Next steps

When you have written code and customized downloading, parsing and all
the other steps, you’ll want to run all these steps for all your
docrepos in a single command by using the special value all for
docrepo, and again all for action:

./ferenda-build.py all all

By now, you should have a basic idea about the key concepts of
ferenda. In the next section, Key concepts, we’ll explore them
further.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Key concepts

Project

A collection of docrepos and configuration that is used to make a
useful web site. The first step in creating a project is running
ferenda-setup <projectname>.

A project is primarily defined by its configuration file at
<projectname>/ferenda.ini, which specifies which docrepos are
used, and settings for them as well as settings for the entire
project.

A project is managed using the ferenda-build.py tool.

If using the API instead of these command line tools, there is no
concept of a project except for what your code provides. Your client
code is responsible for creating the docrepo classes and providing
them with proper settings. These can be loaded from a
ferenda.ini-style file, be hard-coded, or handled in any other way
you see fit.

Note

Ferenda uses the layeredconfig module internally to handle all
settings.

Configuration

A ferenda docrepo object can be configured in two ways - either when
creating the object, eg:

d = DocumentSource(datadir="mydata", loglevel="DEBUG",force=True)

Note

Parameters that is not provided when creating the object are
defaulted from the built-in configuration values (see below)

Or it can be configured using the LayeredConfig
class, which takes configuration data from three places:

	built-in configuration values (provided by
get_default_options())

	values from a configuration file (normally ferenda.ini”, placed
alongside ferenda-build.py)

	command-line parameters, eg --force --datadir=mydata

d = DocumentSource()
d.config = LayeredConfig(defaults=d.get_default_options(),
 inifile="ferenda.ini",
 commandline=sys.argv)

(This is what ferenda-build.py does behind the scenes)

Configuration values from the configuration file overrides built-in
configuration values, and command line parameters override
configuration file values.

By setting the config property, you override any parameters provided when
creating the object.

These are the normal configuration options:

	option
	description
	default

	datadir
	Directory for all downloaded/parsed etc
files
	‘data’

	patchdir
	Directory containing patch files used by
patch_if_needed
	‘patches’

	parseforce
	Whether to re-parse downloaded files,
even if resulting XHTML1.1 files exist
and are newer than downloaded files
	False

	compress
	Whether to compress intermediate files.
Can be either a empty string (don’t
compress) or ‘bz2’ (compress using bz2).
	‘’

	serializejson
	Whether to serialize document data as a
JSON document in the parse step.
	False

	generateforce
	Whether to re-generate browser-ready
HTML5 files, even if they exist and are
newer than all dependencies
	False

	force
	If True, overrides both parseforce and
generateforce.
	False

	fsmdebug
	Whether to display debugging information
from FSMParser
	False

	refresh
	Whether to re-download all files even if
previously downloaded.
	False

	lastdownload
	The datetime when this repo was last
downloaded (stored in conf file)
	None

	downloadmax
	Maximum number of documents to download
(None means download all of them).
	None

	conditionalget
	Whether to use Conditional GET (through
the If-modified-since and/or
If-none-match headers)
	True

	url
	The basic URL for the created site, used
as template for all managed resources in
a docrepo (see canonical_uri()).
	‘http://localhost:8000/‘

	fulltextindex
	Whether to index all text in a fulltext
search engine. Note: This can take a lot
of time.
	True

	useragent
	The user-agent used with any external
HTTP Requests. Please change this into
something containing your contact info.
	‘ferenda-bot’

	storetype
	Any of the suppored types: ‘SQLITE’,
‘SLEEPYCAT’, ‘SESAME’ or ‘FUSEKI’.
See Triple stores.
	‘SQLITE’

	storelocation
	The file path or URL to the triple store,
dependent on the storetype
	‘data/ferenda.sqlite’

	storerepository
	The repository/database to use within the
given triple store (if applicable)
	‘ferenda’

	indextype
	Any of the supported types: ‘WHOOSH’ or
‘ELASTICSEARCH’. See
Fulltext search engines.
	‘WHOOSH’

	indexlocation
	The location of the fulltext index
	‘data/whooshindex’

	republishsource
	Whether the Atom files should contain
links to the original, unparsed, source
documents
	False

	combineresources
	Whether to combine and minify all css and
js files into a single file each
	False

	cssfiles
	A list of all required css files
	[‘http://fonts.googleapis.com/css?family=Raleway:200,100‘,
‘res/css/normalize.css’,
‘res/css/main.css’,
‘res/css/ferenda.css’]

	jsfiles
	A list of all required js files
	[‘res/js/jquery-1.9.0.js’,
‘res/js/modernizr-2.6.2-respond-1.1.0.min.js’,
‘res/js/ferenda.js’]

	staticsite
	Whether to generate static HTML files
suitable for offline usage (removes
search and uses relative file paths
instead of canonical URIs)
	False

	legacyapi
	Whether the REST API should provide a
simpler API for legacy clients. See
The WSGI app.
	False

DocumentRepository

A document repository (docrepo for short) is a class that handles all
aspects of a document collection: Downloading the documents (or
aquiring them in some other way), parsing them into structured
documents, and then re-generating HTML documents with added niceties,
for example references from documents from other docrepos.

You add support for a new collection of documents by subclassing
DocumentRepository. For more
details, see Creating your own document repositories

Document

A Document is the main unit of information in
Ferenda. A document is primarily represented in serialized form as a
XHTML 1.1 file with embedded metadata in RDFa format, and in code by
the Document class. The class has five
properties:

	meta (a RDFLib

 Parsing and representing document metadata

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Parsing and representing document metadata

Every document has a number of properties, such as it’s title,
authors, publication date, type and much more. These properties are
called metadata. Ferenda does not have a fixed set of which metadata
properties are available for any particular document type. Instead, it
encourages you to describe the document using RDF and any suitable
vocabulary (or vocabularies). If you are new to RDF, a good starting
point is the RDF Primer [http://www.w3.org/TR/rdf-primer/]
document.

Each document has a meta property which initially is an empty
RDFLib

 Building structured documents

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Building structured documents

Any structured documents can be viewed as a tree of higher-level
elements (such as chapters or sections) that contains smaller elements
(like subsections or lists) that each in turn contains even smaller
elements (like paragraphs or list items). When using ferenda, you can
create documents by creating such trees of elements. The
ferenda.elements module contains classes for such elements.

Most of the classes can be used like python lists (and are, in fact,
subclasses of list [http://docs.python.org/3/library/stdtypes.html#list]). Unlike the aproach used by
xml.etree.ElementTree and BeautifulSoup, where all
objects are of a specific class, and a object property determines the
type of element, the element objects are of different classes if the
elements are different. This means that elements representing a
paragraph are ferenda.elements.Paragraph, and elements
representing a document section are
ferenda.elements.Section and so on. The core
ferenda.elements module contains around 15 classes that
covers many basic document elements, and the submodule
ferenda.elements.html contains classes that correspond to
all HTML tags. There is some functional overlap between these two
module, but ferenda.elements contains several constructs
which aren’t directly expressible as HTML elements
(eg. Page,
:~py:class:ferenda.elements.SectionalElement and
:~py:class:ferenda.elements.Footnote)

Each element constructor (or at least those derived from
CompoundElement) takes a list as an
argument (same as list [http://docs.python.org/3/library/stdtypes.html#list]), but also any number of keyword
arguments. This enables you to construct a simple document like this:

from ferenda.elements import Body, Heading, Paragraph, Footnote

doc = Body([Heading(["About Doc 43/2012 and it's interpretation"],predicate="dcterms:title"),
 Paragraph(["According to Doc 43/2012",
 Footnote(["Available at http://example.org/xyz"]),
 " the bizbaz should be frobnicated"])
])

Note

Since CompoundElement works like
list [http://docs.python.org/3/library/stdtypes.html#list], which is initialized with any iterable, you
should normalliy initialize it with a single-element list of
strings. If you initialize it directly with a string, the
constructor will treat that string as an iterable and create one
child element for every character in the string.

Creating your own element classes

The exact structure of documents differ greatly. A general document
format such as XHTML or ODF cannot contain special constructs for
preamble recitals of EC directives or patent claims of US patents. But
your own code can create new classes for this. Example:

from ferenda.elements import CompoundElement, OrdinalElement

class Preamble(CompoundElement): pass
class PreambleRecital(CompoundElement,OrdinalElement):
 tagname = "div"
 rdftype = "eurlex:PreambleRecital"

doc = Preamble([PreambleRecital("Un",ordinal=1)],
 [PreambleRecital("Deux",ordinal=2)],
 [PreambleRecital("Trois",ordinal=3)])

Mixin classes

As the above example shows, it’s possible and even recommended to use
multiple inheritance to compose objects by subclassing two classes –
one main class who’s semantics you’re extending, and one mixin class
that contains particular properties. The following classes are useful
as mixins:

	OrdinalElement: for representing
elements with some sort of ordinal numbering. An ordinal element has
an ordinal property, and different ordinal objects can be
compared or sorted. The sort is based on the ordinal property. The
ordinal property is a string, but comparisons/sorts are done in a
natural way, i.e. “2” < “2 a” < “10”.

	TemporalElement: for representing
things that has a start and/or a end date. A temporal element has
an in_effect method which takes a date (or uses today’s date if
none given) and returns true if that date falls between the start
and end date.

Rendering to XHTML

The built-in classes are rendered as XHTML by the built-in method
render_xhtml(), which first
creates a <head> section containing all document-level metadata
(i.e. the data you have specified in your documents meta
property), and then calls the as_xhtml method on the root body
element. The method is called with doc.uri as a single argument,
which is then used as the RDF subject for all triples in the document
(except for those sub-elements which themselves have a uri
property)

All built-in element classes derive from
AbstractElement, which contains a generic
implementation of as_xhtml(),
that recursively creates a lxml element tree from itself and it’s
children.

Your own classes can specify how they are to be rendered in XHTML by
overriding the tagname and
classname properties, or for
full control, the as_xhtml()
method.

As an example, the class SectionalElement
overrides as_xhtml to the effect that if you provide
identifier, ordinal and title properties for the object, a
resource URI is automatically constructed and four RDF triples are
created (rdf:type, dcterms:title, dcterms:identifier, and bibo:chapter):

from ferenda.elements import SectionalElement
p = SectionalElement(["Some content"],
 ordinal = "1a",
 identifier = "Doc pt 1(a)",
 title="Title or name of the part")
body = Body([p])
from lxml import etree
etree.tostring(body.as_xhtml("http://example.org/doc"))

...which results in:

<body xmlns="http://www.w3.org/1999/xhtml" about="http://example.org/doc">
 <div about="http://example.org/doc#S1a"
 typeof="bibo:DocumentPart"
 property="dcterms:title"
 content="Title or name of the part"
 class="sectionalelement">
 <span href="http://example.org/doc"
	 rel="dcterms:isPartOf" />
 <span about="http://example.org/doc#S1a"
	 property="dcterms:identifier"
	 content="Doc pt 1(a)" />
 <span about="http://example.org/doc#S1a"
	 property="bibo:chapter"
	 content="1a" />
 Some content
 </div>
</body>

However, this is a convenience method of SectionalElement, amd may not
be appropriate for your needs. The general way of attaching metdata to
document parts, as specified in Metadata about parts of the document, is to
provide each document part with a uri and meta property. These
are then automatically serialized as RDFa statements by the default
as_xhtml implementation.

Convenience methods

Your element tree structure can be serialized to well-formed XML using
the serialize() method. Such a
serialization can be turned back into the same tree using
deserialize(). This is primarily useful
during debugging.

You might also find the
as_plaintext method
useful. It works similar to
as_xhtml, but returns a
plaintext string with the contents of an element, including all
sub-elements

The ferenda.elements.html module contains the method
elements_from_soup() which converts a
BeautifulSoup tree into the equivalent tree of element objects.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Parsing document structure

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Parsing document structure

In many scenarios, the basic steps in parsing source documents are
similar. If your source does not contain properly nested structures
that accurately represent the structure of the document (such as
well-authored XML documents), you will have to re-create the structure
that the author intended. Usually, text formatting, section numbering
and other clues contain just enough information to do that.

In many cases, your source document will naturally be split up in a
large number of “chunks”. These chunks may be lines or paragraphs in a
plaintext documents, or tags of a certain type in a certain location
in a HTML document. Regardless, it is often easy to generate a list of
such chunks. See, in particular, Reading files in various formats.

Note

For those with a background in computer science and formal
languages, a chunk is sort of the same thing as a token, but
whereas a token typically is a few characters in length, a chunk is
typically one to several sentences long. Splitting up a documents
in chunks is also typically much simpler than the process of
tokenization.

These chunks can be fed to a finite state machine, which looks at
each chunk, determines what kind of structural element it probably
is (eg. a headline, the start of a chapter, a item in a bulleted
list...) by looking at the chunk in the context of previous chunks,
and then explicitly re-creates the document structure that the author
(presumably) intended.

FSMParser

The framework contains a class for creating such state machines,
FSMParser. It is used with a set of the following objects:

	Object
	Purpose

	Recognizers
	Functions that look at a chunk and determines if
it is a particular structural element.

	Constructors
	Functions that creates a document element from a chunk
(or series of chunks)

	States
	Identifiers for the current state of the document being
parsed, ie. “in-preamble”, “in-ordered-list”

	Transitions
	mapping (current state(s), recognizer) ->
(new state, constructor)

You initialize the parser with the transition table (which contains
the other objects), then call it’s parse() method with a iterator of
chunks, an initial state, and an initial constructor. The result of
parse is a nested document object tree.

A simple example

Consider a very simple document format that only has three kinds of
structural elements: a normal paragraph, preformatted text, and
sections. Each section has a title and may contain paragraphs or
preformatted text, which in turn may not contain anything else. All
chunks are separated by double newlines

The section is identified by a header, which is any single-line string
followed by a line of = characters of the same length. Any time a new
header is encountered, this signals the end of the current section:

This is a header
================

A preformatted section is any chunk where each line starts with at
least two spaces:

some example of preformatted text
def world(name):
 return "Hello", name

A paragraph is anything else:

This is a simple paragraph.
It can contain short lines and longer lines.

(You might recognize this format as a very simple form of
ReStructuredText).

Recognizers for these three elements are easy to build:

from ferenda import elements, FSMParser

def is_section(parser):
 chunk = parser.reader.peek()
 lines = chunk.split("\n")
 return (len(lines) == 2 and
 len(lines[0]) == len(lines[1]) and
 lines[1] == "=" * len(lines[0]))

def is_preformatted(parser):
 chunk = parser.reader.peek()
 lines=chunk.split("\n")
 not_indented = lambda x: not x.startswith(" ")
 return len(list(filter(not_indented,lines))) == 0

def is_paragraph(parser):
 return True

The elements module contains ready-built classes which we can use
to build our constructors:

def make_body(parser):
 b = elements.Body()
 return parser.make_children(b)

def make_section(parser):
 chunk = parser.reader.next()
 title = chunk.split("\n")[0]
 s = elements.Section(title=title)
 return parser.make_children(s)
setattr(make_section,'newstate','section')

def make_paragraph(parser):
 return elements.Paragraph([parser.reader.next()])

def make_preformatted(parser):
 return elements.Preformatted([parser.reader.next()])

Note that any constructor which may contain sub-elements must itself
call the make_children() method of the
parser. That method takes a parent object, and then repeatedly creates
child objects which it attaches to that parent object, until a exit
condition is met. Each call to create a child object may, in turn,
call make_children (not so in this very simple example).

The final step in putting this together is defining the transition
table, and then creating, configuring and running the parser:

transitions = {("body", is_section): (make_section, "section"),
 ("section", is_paragraph): (make_paragraph, None),
 ("section", is_preformatted): (make_preformatted, None),
 ("section", is_section): (False, None)}

text = """First section
=============

This is a regular paragraph. It will not be matched by is_section
(unlike the above chunk) or is_preformatted (unlike the below chunk),
but by the catch-all is_paragraph. The recognizers are run in the
order specified by FSMParser.set_transitions().

 This is a preformatted section.
 It could be used for source code,
 +-------------------+
 | line drawings |
 +-------------------+
 or what have you.

Second section
==============

The above new section implicitly closed the first section which we
were in. This was made explicit by the last transition rule, which
stated that any time a section is encountered while in the "section"
state, we should not create any more children (False) but instead
return to our previous state (which in this case is "body", but for a
more complex language could be any number of states)."""

p = FSMParser()
p.set_recognizers(is_section, is_preformatted, is_paragraph)
p.set_transitions(transitions)
p.initial_constructor = make_body
p.initial_state = "body"
body = p.parse(text.split("\n\n"))
print(elements.serialize(body))

The result of this parse is the following document object tree (passed
through serialize()):

<Body>
 <Section title="First section">
 <Paragraph>
 <str>This is a regular paragraph. It will not be matched by is_section
(unlike the above chunk) or is_preformatted (unlike the below chunk),
but by the catch-all is_paragraph. The recognizers are run in the
order specified by FSMParser.set_transitions().</str>
 </Paragraph><Preformatted>
 <str> This is a preformatted section.
 It could be used for source code,
 +-------------------+
 | line drawings |
 +-------------------+
 or what have you.</str>
 </Preformatted>
 </Section>
 <Section title="Second section">
 <Paragraph>
 <str>The above new section implicitly closed the first section which we
were in. This was made explicit by the last transition rule, which
stated that any time a section is encountered while in the "section"
state, we should not create any more children (False) but instead
return to our previous state (which in this case is "body", but for a
more complex language could be any number of states).</str>
 </Paragraph>
 </Section>
</Body>

	

Writing complex parsers

Recognizers

Recognizers are any callables that can be called with the parser
object as only parameter (so no class- or instancemethods). Objects
that implement __call__ are OK, as are lambda functions.

One pattern to use when creating parsers is to have a method on your
docrepo class which defines a number of nested functions, then creates
a transition table using those functions, create the parser with that
transition table, and then return the initialized parser object. Your
main parse method can then call this method, break the input document
into suitable chunks, then call parse on the recieved parser object.

Constructors

Like recognizers, constructors may be any callable, and they are
called with the parser object as the only parameter.

Constructors that return elements which in themselves do not contain
sub-elements are simple to write – just return the created element
(see eg make_paragraph or make_preformatted above).

Constructors that are to return elements that may contain subelement
must first create the element, then call
parser.:meth:ferenda.FSMParser.make_children with that element as a
single argument. make_children will treat that element as a list,
and append any sub-elements created to that list, before returning it.

The parser object

The parser object is passed to every recognizer and constructor. The
most common use is to read the next available chunk from it’s reader
property – this is an instance of a simple wrapper around the stream
of chunks. The reader has two methods: peek and next, which
both returns the next available chunk, but next also consumes the
chunk in question. A recognizer typically calls
parser.reader.peek(), a constructor typically calls
parser.reader.next().

The parser object also has the following properties

	Property
	Description

	currentstate
	The current state of the parser, using whatever value for
state that was defined in the transition table
(typically a string)

	debug
	boolean that indicates whether to emit debug messages
(by default False)

There is also a parser._debug() method that emits debug messages,
indicating current parser nesting level and current state, if
parser.debug is True

The transition table

The transition table is a mapping between (currentstate(s), successful
recognizer) and (constructor-or-false,newstate-or-None)

The transition table is used in the following way: All recognizers
that can be applicable in the current state are tried in the specified
order until one of them returns True. Using this pair of
(currentstate, recognizer), the corresponding value tuple is looked up
in the transition table.

constructor-or-False: ...

newstate-or-None: ...

The key in the transition table can also be a callable, which is
called with (currentstate,symbol,parser?) and is expected to return a
(constructor-or-false,newstate-or-None) tuple

Tips for debugging your parser

Two useful commands in the Devel module:

$ # sets debug, prints serialize(parser.parse(...))
$./ferenda-build.py devel fsmparse parser < chunks
$ # sets debug, returns name of matching function
$./ferenda-build.py devel fsmanalyze parser <currentstate> < chunk

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Citation parsing

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Citation parsing

In many cases, the text in the body of a document contains references
(citations) to other documents in the same or related document
collections. A good implementation of a document repository needs to
find and express these references. In ferenda, references are
expressed as basic hyperlinks which uses the rel attribute to
specify the sort of relationship that the reference expresses. The
process of citation parsing consists of analysing the raw text,
finding references within that text, constructing sensible URIs for
each reference, and formatting these as <a href="..."
rel="...">[citation] style links.

Since standards for expressing references / citations are very
diverse, Ferenda requires that the docrepo programmer specifies the
basic rules of how to recognize a reference, and how to put together
the properties from a reference (such as year of publication, or page)
into a URI.

The built-in solution

Ferenda uses the Pyparsing [http://pyparsing.wikispaces.com/]
library in order to find and process citations. As an example, we’ll
specify citation patterns and URI formats for references that occurr
in RFC documents. These are primarily of three different kinds
(examples come from RFC 2616):

	URL references, eg “GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1”

	IETF document references, eg “STD 3”, “BCP 14” and “RFC 2068”

	Internal endnote references, eg “[47]” and “[33]”

We’d like to make sure that any URL reference gets turned into a link
to that same URL, that any IETF document reference gets turned into
the canonical URI for that document, and that internal endote
references gets turned into document-relative links, eg “#endnote-47”
and “#endnote-33”. (This requires that other parts of the
parse() process has created IDs for
these in doc.body, which we assume has been done).

Turning URL references in plain text into real links is so common that
ferenda has built-in support for this. The support comes in two parts:
First running a parser that detects URLs in the textual content, and
secondly, for each match, running a URL formatter on the parse result.

At the end of your parse() method,
do the following.

from ferenda import CitationParser
from ferenda import URIFormatter
import ferenda.citationpatterns
import ferenda.uriformats

CitationParser is initialized with a list of pyparsing
ParserElements (or any other object that has a scanString method
that returns a generator of (tokens,start,end) tuples, where start
and end are integer string indicies and tokens are dict-like
objects)
citparser = CitationParser(ferenda.citationpatterns.url)

URIFormatter is initialized with a list of tuples, where each
tuple is a string (identifying a named ParseResult) and a function
(that takes as a single argument a dict-like object and returns a
URI string (possibly relative)
citparser.set_formatter(URIFormatter(("URLRef", ferenda.uriformats.url)))

citparser.parse_recursive(doc.body)

The parse_recursive() takes any
elements document tree and modifies it in-place to
mark up any references to proper Link
objects.

Extending the built-in support

Building your own citation patterns and URI formats is fairly
simple. First, specify your patterns in the form of a pyparsing
parseExpression, and make sure that both the expression as a whole,
and any individual significant properties, are named by calling
.setResultName.

Then, create a set of formatting functions that takes the named
properties from the parse expressions above and use them to create a
URI.

Finally, initialize a CitationParser object from
your parse expressions and a URIFormatter object
that maps named parse expressions to their corresponding URI
formatting function, and call
parse_recursive()

from pyparsing import Word, nums

from ferenda import CitationParser
from ferenda import URIFormatter
import ferenda.citationpatterns
import ferenda.uriformats

Create two ParserElements for IETF document references and internal
references
rfc_citation = "RFC" + Word(nums).setResultsName("RFCRef")
bcp_citation = "BCP" + Word(nums).setResultsName("BCPRef")
std_citation = "STD" + Word(nums).setResultsName("STDRef")
ietf_doc_citation = (rfc_citation | bcp_citation | std_citation).setResultsName("IETFRef")

endnote_citation = ("[" + Word(nums).setResultsName("EndnoteID") + "]").setResultsName("EndnoteRef")

Create a URI formatter for IETF documents (URI formatter for endnotes
is so simple that we just use a lambda function below
def rfc_uri_formatter(parts):
 # parts is a dict-like object created from the named result parts
 # of our grammar, eg those ParserElement for which we've called
 # .setResultsName(), in this case eg. {'RFCRef':'2068'}

 # NOTE: If your document collection contains documents of this
 # type and you're republishing them, feel free to change these
 # URIs to URIs under your control,
 # eg. "http://mynetstandards.org/rfc/%(RFCRef)s/" and so on
 if 'RFCRef' in parts:
 return "http://www.ietf.org/rfc/rfc%(RFCRef)s.txt" % parts
 elif 'BCPRef' in parts:
 return "http://tools.ietf.org/rfc/bcp/bcp%(BCPRef)s.txt" % parts
 elif 'STDRef' in parts:
 return "http://rfc-editor.org/std/std%(STDRef)s.txt" % parts
 else:
 return None

CitationParser is initialized with a list of pyparsing
ParserElements (or any other object that has a scanString method
that returns a generator of (tokens,start,end) tuples, where start
and end are integer string indicies and tokens are dict-like
objects)
citparser = CitationParser(ferenda.citationpatterns.url,
 ietf_doc_citation,
 endnote_citation)

URIFormatter is initialized with a list of tuples, where each
tuple is a string (identifying a named ParseResult) and a function
(that takes as a single argument a dict-like object and returns a
URI string (possibly relative)
citparser.set_formatter(URIFormatter(("url", ferenda.uriformats.url),
 ("IETFRef", rfc_uri_formatter),
 ("EndnoteRef", lambda d: "#endnote-%(EndnoteID)s" % d)))

citparser.parse_recursive(doc.body)

This turns this document

<body xmlns="http://www.w3.org/1999/xhtml" about="http://example.org/doc/">
 <h1>Main document</h1>
 <p>A naked URL: http://www.w3.org/pub/WWW/TheProject.html.</p>
 <p>Some IETF document references: See STD 3, BCP 14 and RFC 2068.</p>
 <p>An internal endnote reference: ...relevance ranking, cf. [47]</p>
 <h2>References</h2>
 <p id="endnote-47">47: Malmgren, Towards a theory of jurisprudential
 ranking</p>
</body>

Into this document:

<body xmlns="http://www.w3.org/1999/xhtml" about="http://example.org/doc/">
 <h1>Main document</h1>
 <p>
 A naked URL: <a href="http://www.w3.org/pub/WWW/TheProject.html"
		 rel="dcterms:references"
		 >http://www.w3.org/pub/WWW/TheProject.html.
 </p>
 <p>
 Some IETF document references: See
 <a href="http://rfc-editor.org/std/std3.txt"
 rel="dcterms:references">STD 3,
 <a href="http://tools.ietf.org/rfc/bcp/bcp14.txt"
 rel="dcterms:references">BCP 14 and
 <a href="http://www.ietf.org/rfc/rfc2068.txt"
 rel="dcterms:references">RFC 2068.
 </p>
 <p>
 An internal endnote reference: ...relevance ranking, cf.
 <a href="#endnote-47"
 rel="dcterms:references">[47]
 </p>
 <h2>References</h2>
 <p id="endnote-47">47: Malmgren, Towards a theory of jurisprudential
 ranking</p>
</body>

Rolling your own

For more complicated situations you can skip calling
parse_recursive() and instead do your
own processing with the optional support of
CitationParser.

This is needed in particular for complicated ParserElement objects
which may contain several sub-ParserElement which needs to be
turned into individual links. As an example, the text “under Article
56 (2), Article 57 or Article 100a of the Treaty establishing the
European Community” may be matched by a single top-level ParseResult
(and probably must be, if “Article 56 (2)” is to actually reference
article 56(2) in the Treaty), but should be turned in to three
separate links.

In those cases, iterate through your doc.body yourself, and for each
text part do something like the following:

from ferenda import CitationParser, URIFormatter, citationpatterns, uriformats
from ferenda.elements import Link

citparser = CitationParser()
citparser.add_grammar(citationpatterns.url)
formatter = URIFormatter(("url", uriformats.url))

res = []
text = "An example: http://example.org/. That is all."

for node in citparser.parse_string(text):
 if isinstance(node,str):
 # non-linked text, add and continue
 res.append(node)
 if isinstance(node, tuple):
 (text, match) = node
 uri = formatter.format(match)
 if uri:
 res.append(Link(uri, text, rel="dcterms:references"))

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Reading files in various formats

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Reading files in various formats

The first step of parsing a document is often getting actual text from
a file. For plain text files, this is not a difficult process, but for
eg. Word and PDF documents some sort of library support is useful.

Ferenda contains three different classes that all deal with this
problem. They do not have a unified interface, but instead contain
different methods depending on the structure and capabilities of the
file format they’re reading.

Reading plain text files

The TextReader class works sort of like a regular
file object, and can read a plain text file line by line, but contains
extra methods for reading files paragraph by paragraph or page by
page. It can also produce generators that yield the file contents
divided into arbitrary chunks, which is suitable as input for
FSMParser.

Microsoft Word documents

The WordReader class can read both old-style
.doc files and newer, XML-based .docx files. The former
requires that antiword [http://www.winfield.demon.nl/] is
installed, but the latter has no additional dependencies.

This class does not present any interface for actually reading the
word document – instead, it converts the document to a XML file which
is either based on the docbook output of antiword, or the raw
OOXML found inside of the .docx file.

PDF documents

PDFReader reads PDF documents and makes them
available as a list of pages, where each page contains a list of
Textbox objects, which in turn contains
a list of Textelement objects.

Its textboxes() method is a flexible way
of getting a generator of suitable text chunks. By passing a “glue”
function to that method, you can specify exact rules on which rows of
text should be combined to form larger suitable chunks
(eg. paragraphs). This stream of chunks can be fed directly as input
to FSMParser.

Handling non-PDFs and scanned documents

The class can also handle any other type of document (such as
Word/OOXML/WordPerfect/RTF) that OpenOffice or LibreOffice handles by
first converting it to PDF using the soffice command line
tool. This is done by specifiying the convert_to_pdf parameter.

If the PDF contains only scanned pages (without any OCR information),
the pages can be run through the tesseract command line tool. You
need to provide the main language of the document as the ocr_lang
parameter, and you need to have installed the tesseract language files
for that language.

Analyzing PDF documents

When processing a PDF file, the information contained in eg a
Textbox object (position, size, font)
is useful to determine what kind of content it might be, eg. if it’s
set in a header-like font, it probably signals the start of a section,
and if it’s a digit-like text set in a small font outside of the main
content area, it’s probably a page number.

Information about eg page margins, header styles etc can be hardcoded
in your processing code, but it’s also possible to use the companion
class PDFAnalyzer can be used to statistically
analyze a complete document and then make educated guesses about these
metrics. It can also output histogram plots and an annotated version
of the original PDF file with lines marking the identified margins,
styles and text chunks (given a provided “glue” function identical to
the one provided to textboxes())

The class is designed to be overridden if your document has particular
rules about eg. header styles or additional margin metrics.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Grouping documents with facets

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Grouping documents with facets

A collection of documents can be arranged in a set of groups, such as
by year of publication, by document author, or by keyword. With Ferenda,
each such method of grouping is described in the form of a
Facet. By providing a list of Facet objects in
its facets() method, your docrepo
can specify multiple ways of arranging the documents it’s
handling. These facets are used to construct a static Table of
contents for your site, as well as creating Atom feeds of all
documents and defining the fields available for querying when using
the REST API.

A facet object is initialized with a set of parameters that, taken
together, define the method of grouping. These include the RDF
predicate that contains the data used for grouping, the datatype to be
used for that data, functions (or other callables) that sorts the data
into discrete groups, and other parameters that affect eg. the sorting
order or if a particular facet is used in a particular context.

Applying facets

Facets are used in several different contexts (see below) but the
general steps for applying them are similar. First, all the data that
might be needed by the total set of facets is collected. This is
normally done by querying the triple store for it. Each facet contains
information about which RDF predicate

Once this set of data is retrieved, as a giant table with one row for
each resource (document), each facet is used to create a set of groups
and place each document in zero or more of these groups.

Selectors and identificators

The grouping is primarily done through a selector function. The
selector function recieves three arguments:

	a dict with some basic information about one document (corresponding
to one row),

	the name of the current facet (binding), and

	optionally some repo-dependent extra data in the form of an RDF graph.

It should return a single string, which should be a human-readable
label for a grouping. The selector is called once for every document
in the docrepo, and each document is sorted in one (or more, see
below) group identified by that string. As a simple example, a
selector may group documents into years of publication by finding the
date of the dcterms:issued property and extracting the year part
of it. The string returned by the should be suitable for end-user
display.

Each facet also has a similar function called the identificator
function. It recieves the same arguments as the selector function,
but should return a string that is well suited for eg. a URI fragment,
ie. not contain spaces or non-ascii characters.

The Facet class has a number of classmethods that
can act as selectors and/or identificators.

Contexts where facets are used

Table of contents

Each docrepo will have their own set of Table of contents pages. The
TOC for a docrepo will contain one set of pages for each defined
facet, unless use_for_toc is set to False.

Atom feeds

Each docrepo will have a set of feedsets, where each feedset is based
on a facet (only those that has the property use_for_feed set to
True). The structure of each feedset will mirror the structure of
each set of TOC pages, and re-uses the same selector and identificator
methods. It makes sense to have a separate feed for eg. each publisher
or subject matter in a repository that comprises a reasonable amount
of publishers and subject matters (using dcterms:publisher or
dcterms:subject as the base for facets), but it does not make much
sense to eg. have a feed for all documents published in 1975 (using
dcterms:published as the base for a facet). Therefore, the default
value for use_for_feed is False.

Furthermore, a “main” feedset with a single feed containing
all documents is also constructed.

The feeds are always sorted by the updated property (most recent
updated first), taken from the corresponding
DocumentEntry object.

The fulltext index

The metadata that each facet uses is stored as a separate field in the
fulltext index. Facet can specify exactly how a particular facet
should be stored (ie if the field should be boosted in any particular
way). Note that the data stored in the fulltext index is not passed
through the selector function, the original RDF data is stored as-is.

The ReST API

The ReST API uses all defined facets for all repos
simultaneously. This means that you can query eg. all documents
published in a certain year, and get results from all docrepos. This
requires that the defined facets don’t clash, eg. that you don’t have
two facets based on dcterms:publisher where one uses URI
references and the other uses.

Grouping a document in several groups

If a docrepo uses a facet that has multiple_values set to
True, it’s possible for that facet to categorize the document in
more than one group (a typical usecase is documents that have multiple
dcterms:subject keywords, or articles that have multiple
dcterms:creator authors).

Combining facets from different docrepos

Facets that map to the same fulltextindex field must be equal. The
rules for equality: If the rdftype and the dimension_type and
dimension_label and selector is equal, then the facets are
equal. selector functions are only equal if they are the same function
object, ie it’s not just enough that they are two functions that work
identically.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Customizing the table(s) of content

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Customizing the table(s) of content

In order to make the processed documents in a docrepo accessible for a
website visitors, some sort of index or table of contents (TOC) that
lists all available documents must be created. It’s often helpful to
create different lists depending on different facets of the
information in documents, eg. to sort document by title, publication
date, document status, author and similar properties.

Ferenda contains a number of methods that help with this task. The
general process has three steps:

	Determine the criteria for how to group and sort all documents

	Query the triplestore for basic information about all documents in
the docrepo

	Apply these criteria on the basic information from the database

It should be noted that you don’t need to do anything in order to get
a very basic TOC. As long as your
parse() step has extracted a
dcterms:title string and optionally a dcterms:issued date for
each document, you’ll get basic “Sorted by title” and “Sorted by date
of publication” TOCs for free.

Defining facets for grouping and sorting

A facet in this case is a method for grouping a set into documents
into distinct categories, then sorting the documents, as well as the
categories themseves.

Each facet is represented by a Facet object. If
you want to customize the table of contents, you have to provide a
list of these by overriding
facets().

The basic way to do this is to initialize each Facet object with a rdf
predicate. Ferenda has some basic knowledge about some common
predicates and know how to construct sensible Facet objects for
them – ie. if you specify the predicate dcterms:issued, you get a
Facet object that groups documents by year of publication and
sorts each group by date of publication.

 def facets(self):
 from ferenda import Facet
 return [Facet(self.ns['dcterms'].issued),
 Facet(self.ns['dcterms'].identifier)]

You can customize the behaviour of each Facet by providing extra
arguments to the constructor.

The label and pagetitle parameters are useful to control the
headings and labels for the generated pages. They should hopefully be
self-explainatory.

The selector and key parameters should be functions (or any
other callable) that accept a dictionary of string values, one string
which is generally a key on the dictionary, and one rdflib graph
containing whatever
commondata. These functions are
called once each for each row in the result set generated in the next
step (see below) with the contents of that row. They should each
return a single string value. The selector function should return
the label of a group that the document belongs to, i.e. the initial
letter of the title, or the year of a publication date. The key
function should return a value that will be used for sorting, i.e. for
document titles it could return the title without any leading “The”,
lowercased, spaces removed etc. See also Grouping documents with facets.

Getting information about all documents

The next step is to perform a single SELECT query against the
triplestore that retrieves a single large table, where each document
is a row with a number of properties.

(This is different from the case of getting information related to a
particular document, in that case, a CONSTRUCT query that retrieves a
small RDF graph is used).

Your list of Facet objects returned by
facets() is used to automatically
select all data from the SPARQL store.

Making the TOC pages

The final step is to apply these criteria to the table of document
properties in order to create a set of static HTML5 pages. This is in
turn done in three different sub-steps, neither of which you’ll have
to override.

The first sub-step, toc_pagesets(),
applies the defined criteria to the data fetched from the triple store
to calculate the complete set of TOC pages needed for each criteria
(in the form of a TocPageset object, filled with
TocPage objects). If your criteria groups documents
by year of publication date, this method will yield one page for every
year that at least one document was published in.

The next sub-step,
toc_select_for_pages(), applies the
criteria on the data again, and adds each document to the appropriate
TocPage object.

The final sub-step transforms each of these TocPage
objects into a HTML5 file. In the process, the method
toc_item() is called for every
single document listed on every single TOC page. This method controls
how each document is presented when laid out. It’s called with a dict
and a binding (same as used on the selector and key
functions), and is expected to return a list of
elements objects.

As an example, if you want to group by dcterms:identifier, but present
each document with dcterms:identifier + dcterms:title:

 def toc_item(self, binding, row):
 # note: look at binding to determine which pageset is being
 # constructed in case you want to present documents in
 # different ways depending on that.
 from ferenda.elements import Link
 return [row['identifier'] + ": ",
 Link(row['title'],
 uri=row['uri'])]

The generated TOC pages automatically get a visual representation of
each calculated TocPageset in the left navigational column.

The first page

The main way in to each docrepos set of TOC pages is through the tabs
in the main header. That link goes to a special copy of the first page
in the first pageset. The order of criteria specified by
facets() is therefore important.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Customizing the news feeds

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Customizing the news feeds

During the news step, all documents in a docrepo are published in
one or more feeds. Each feed is made available in both Atom and HTML
formats. You can control which feeds are created, and which documents
are included in each feed, by the facets defined for your repo. The
process is similar to defining criteria for the TOC pages.

The main differences are:

	Most properties/RDF predicates of a document are not suitable as
facets for news feed (it makes little sense to have a feed for
eg. dcterms:title or dcterms:issued). By default, only
rdf:type and dcterms:publisher based facets are used for news feed
generation. You can control this by specifying the use_for_feed
constructor argument.

	The dict that is passed to the selector and identificator functions
contains extra fields from the corresponding
DocumentEntry object. Particularly, the updated
value might be used by your key func in order to sort all entries by
last-updated-date. The summary value might be used to contain a
human-readable summary/representation of the entire document.

	Each row is passed through the news_item() method. You may
override this in order to change the title or summary of
each feed entry for the particular feed being constructed (as
determined by the binding argument).

	A special feed, containing all entries within the docrepo, is always
created.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 The WSGI app

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The WSGI app

All ferenda projects contains a built-in web application. This app
provides navigation, document display and search.

Running the web application

During development, you can just ferenda-build.py runserver. This
starts up a single-threaded web server in the foreground with the web
application, by default accessible as http://localhost:8000/

You can also run the web application under any WSGI [http://wsgi.readthedocs.org/en/latest/] server, such as mod_wsgi [http://code.google.com/p/modwsgi/], uWSGI [https://uwsgi-docs.readthedocs.org/en/latest/index.html] or
Gunicorn [http://gunicorn.org/]. ferenda-setup creates a file
called wsgi.py alongside ferenda-build.py which is used to
serve the ferenda web app using WSGI. This is the contents of that
file:

from ferenda.manager import make_wsgi_app
inifile = os.path.join(os.path.dirname(__file__), "ferenda.ini")
application = make_wsgi_app(inifile=inifile)

Apache and mod_wsgi

In your httpd.conf:

WSGIScriptAlias / /path/to/project/wsgi.py
WSGIPythonPath /path/to/project
<Directory /path/to/project>
 <Files wsgi.py>
 Order deny,allow
 Allow from all
 </Files>
</Directory>

The ferenda web app consists mainly of static files. Only search and
API requests are dynamically handled. By default though, all static
files are served by the ferenda web app. This is simple to set up, but
isn’t optimal performance-wise.

Gunicorn

Just run gunicorn wsgi:application

URLs for retrieving resources

In keeping with Linked Data principles [http://www.w3.org/DesignIssues/LinkedData.html], all URIs for your
documents should be retrievable. By default, all URIs for your
documents start with http://localhost:8000/res
(e.g. http://localhost:8000/res/rfc/4711 – this is controlled by
the url parameter in ferenda.ini). These URIs are retrievable
when you run the built-in web server during development, as described
above.

Document resources

For each resource, use the Accept header to retrieve different
versions of it:

	curl -H "Accept: text/html" http://localhost:8000/res/rfc/4711
returns rfc/generated/4711.html

	curl -H "Accept: application/xhtml+xml"
http://localhost:8000/res/rfc/4711 returns
rfc/parsed/4711.xhtml

	curl -H "Accept: application/rdf+xml"
http://localhost:8000/res/rfc/4711 returns
rfc/distilled/4711.rdf

	curl -H "Accept: text/turtle" http://localhost:8000/res/rfc/4711
returns rfc/distilled/4711.rdf, but in Turtle format

	curl -H "Accept: text/plain" http://localhost:8000/res/rfc/4711
returns rfc/distilled/4711.rdf, but in NTriples format

You can also get extended information about a single document in
various RDF flavours. This extended information includes everything
that construct_annotations()
returns, i.e. information about documents that refer to this document.

	curl -H "Accept: application/rdf+xml"
http://localhost:8000/res/rfc/4711/data returns a RDF/XML
combination of rfc/distilled/4711.rdf and
rfc/annotation/4711.grit.xml

	curl -H "Accept: text/turtle"
http://localhost:8000/res/rfc/4711/data returns the same in Turtle
format

	curl -H "Accept: text/plain"
http://localhost:8000/res/rfc/4711/data returns the same in
NTriples format

	curl -H "Accept: application/json"
http://localhost:8000/res/rfc/4711/data returns the same in
JSON-LD format.

Dataset resources

Each docrepo exposes information about the data it contains through
it’s dataset URI. This is a single URI (controlled by
dataset_uri()) which can be queried
in a similar way as the document resources above:

	curl -H "Accept: application/html" http://localhost/dataset/rfc
returns a HTML view of a Table of Contents for all documents (see
Customizing the table(s) of content)

	curl -H "Accept: text/plain" http://localhost/dataset/rfc
returns rfc/distilled/dump.nt which contains all RDF statements
for all documents in the repository.

	curl -H "Accept: application/rdf+xml"
http://localhost/dataset/rfc returns the same, but in RDF/XML
format.

	curl -H "Accept: text/turtle" http://localhost/dataset/rfc
returns the same, but in turtle format.

File extension content negotiation

In some environments, it might be difficult to set the Accept
header. Therefore, it’s also possible to request different versions of
a resource using a file extension suffix. Ie. requesting
http://localhost:8000/res/base/123.ttl gives the same result as
requesting the resource http://localhost:8000/res/base/123 using
the Accept: text/turtle header. The following extensions can be used

	Content-type
	Extension

	application/xhtml+xml
	.xhtml

	application/rdf+xml
	.rdf

	text/turtle
	.ttl

	text/plain
	.nt

	application/json
	.json

See also The ReST API for querying.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 The ReST API for querying

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The ReST API for querying

Ferenda tries to adhere to Linked Data principles, which makes it easy
to explain how to get information about any individual document or any
complete dataset (see URLs for retrieving resources). Sometimes it’s desirable to
query for all documents matching a particular criteria, including full
text search. Ferenda has a simple API, based on the rinfo-service
component of RDL [https://github.com/rinfo/rdl], and inspired by
Linked data API [https://code.google.com/p/linked-data-api/wiki/Specification], that
enables you to do that. This API only provides search/select
operations that returns a result list. For information about each
individual result in that list, use the methods described in
URLs for retrieving resources.

Note

Much of the things described below are also possible to do in pure
SPARQL. Ferenda does not expose any open SPARQL endpoints to the
world, though. But if you find the below API lacking in some
aspect, it’s certainly possible to directly expose your chosen
triplestores SPARQL endpoint (as long as you’re using Fuseki or
Sesame) to the world.

The default endpoint to query is your main URL + /api/,
eg. http://localhost:8000/api/. The requests always use GET and
encode their parameters in the URL, and the responses are always in
JSON format.

Free text queries

The simplest form of query is a free text query that is run against
all text of all documents. Use the parameter q,
eg. http://localhost:8000/api/?q=tail returns all documents
(and document fragments) containing the word “tail”.

Result lists

The result of a query will be a JSON document containing some general
properties of the result, and a list of result items, eg:

{
 "current": "/myapi/?q=tail",
 "duration": null,
 "items": [
 {
 "dcterms_identifier": "123(A)",
 "dcterms_issued": "2014-01-04",
 "dcterms_publisher": {
 "iri": "http://example.org/publisher/A",
 "label": "http://example.org/publisher/A"
 },
 "dcterms_title": "Example",
 "matches": {
 "text": "<em class=\"match\">tail end of the main document"
 },
 "rdf_type": "http://purl.org/ontology/bibo/Standard",
 "iri": "http://example.org/base/123/a"
 }
],
 "itemsPerPage": 10,
 "startIndex": 0,
 "totalResults": 1
}

Each result item contain all fields that have been indexed (as
specified by your docrepos’ facets, see Grouping documents with facets, the document
URI (as the field iri) and optionally a field matches that
provides a snipped of the matching text.

Parameters

Any indexed property, as defined by your facets, can be used for
querying. The parameter is the same as the qname for the rdftype with
_ instead of :, eq to search all documents that have
dcterms:publisher set to `http://example.org/publisher/A, use
http://localhost:8000/api/?dcterms_publisher=http%3A%2F%2Fexample.org%2Fpublisher%2FA

You can use * as a wildcard for any string data, eg. the above could
be shortened to
http://localhost:8000/api/?dcterms_publisher=*%2Fpublisher%2FA.

If you have a facet with a set dimension_label, you can use that
label directly as a parameter, eg http://localhost:8000/api/?aprilfools=true.

Paging

By default, the result list only contains 10 results. You can inspect
the properties startIndex and totalResults of the response to
find out if there are more results, and use the special parameter
_page to request subsequent pages of results. You can also request
a different length of the result list through the _pageSize
parameter.

Statistics

By requesting the special resource ;stats, eg
http://localhost:8000/api/;stats, you can get a statistics view
over all documents in all your docrepos for each of your defined
facets including the number of document for each value of it’s
selector, eg:

{
 "type": "DataSet",
 "slices": [
	{
	 "dimension": "rdf_type",
 "observations": [
		{"count": 3,
		 "term": "bibo:Standard"}
]
	},
	{
	 "dimension": "dcterms_publisher",
	 "observations": [{
		"count": 1,
		"ref": "http://example.org/publisher/A"
	 }, {
		"count": 2,
		"ref": "http://example.org/publisher/B"
	 }]
	}, {
	 "dimension": "dcterms_issued",
	 "observations": [{
		"count": 1,
		"year": "2013"
	 }, {
		"count": 2,
		"year": "2014"
	 }]
	}]
}

You can also get the same information for the documents in any result
list by setting the special parameter _stats=on.

Ranges

For some parameters, particularly those that use datetime values, it’s
useful to specify ranges instead of exact values. By prefixing the
parameter name with min-, max- or year-, it’s possible to
do that,
eg. http://localhost:8000/api/?min-dcterms_issued=2012-04-01 to
retrieve all documents that have a dcterms:issued later than
2012-04-01, or http://localhost:8000/api/?year-dcterms_issued=2012
to retrieve all documents that are dct:issued during 2012.

Support resources

The special resources common.json and terms.json
(eg. http://localhost:8000/api/common.json and
http://localhost:8000/api/terms.json) contains all the extra data
(see Custom common data) and ontologies (see
Custom ontologies) that your repositories use, in JSON-LD
format. You can use these to display user-friendly labels for
properties and things in your application.

Legacy mode

Ferenda can be made directly compatible with the API used by
rinfo-service (mentioned above) by activating the setting
legacyapi, eg by setting legacyapi = True in ferenda.conf or
using the option --legacyapi on the command line.

Note that this setting is used both during the makeresources step
as well as when serving the API eg with the runserver command. If
you want to play with this setting, you’ll need to re-run
makeresources --force with this enabled.

Running makeresources with this setting enabled also installs a
API explorer app, taken from rinfo-service. You can try it out at
http://localhost:8000/rsrc/ui/.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Setting up external databases

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Setting up external databases

Ferenda stores data in three substantially different ways:

	Documents are stored in the file system

	RDF Metadata is stored in in a triple store [http://en.wikipedia.org/wiki/Triplestore]

	Document text is stored in a fulltext search engine.

There are many capable and performant triple stores and fulltext
search engines available, and ferenda supports a few of them. The
default choice for both are embedded solutions (using RDFLib + SQLite
for a triple store and Whoosh for a fulltext search engine) so that
you can get a small system going without installing and configuring
additional server processess. However, these choices do not work well
with medium to large datasets, so when you start feeling that indexing
and searching is getting slow, you should run an external triplestore
and an external fulltext search engine.

If you’re using the project framework, you set the configuration
values storetype and indextype to new values. You’ll find that
the ferenda-setup tool creates a ferenda.ini that specifies
storetype and indextype, based on whether it can find Fuseki,
Sesame and/or ElasticSearch running on their default ports on
localhost. You still might have to do extra configuration,
particularly if you’re using Sesame as a triple store.

If you setup any of the external databases after running
ferenda-setup, or you want to use some other configuration than
what ferenda-setup selected for you, you can still set the
configuration values in ferenda.ini by editing the file as
described below.

If you are running any of the external databases, but in a non-default
location (including remote locations) you can set the environment
variables FERENDA_TRIPLESTORE_LOCATION and/or
FERENDA_FULLTEXTINDEX_LOCATION to the full URL before running
ferenda-setup.

Triple stores

There are four choices.

RDFLib + SQLite

In ferenda.ini:

[__root__]
storetype = SQLITE
storelocation = data/ferenda.sqlite # single file
storerepository = <projectname>

This is the simplest way to get up and running, requiring no configuration or installs on any platform.

RDFLib + Sleepycat (aka bsddb)

In ferenda.ini:

[__root__]
storetype = SLEEPYCAT
storelocation = data/ferenda.db # directory
storerepository = <projectname>

This requires that bsddb (part of the standard library for python 2) or bsddb3 (separate package) is available and working (which can be a bit of pain on many platforms). Furthermore it’s less stable and slower than RDFLib + SQLite, so it can’t really be recommended. But since it’s the only persistant storage directly supported by RDFLib, it’s supported by Ferenda as well.

Sesame

In ferenda.ini:

[__root__]
storetype = SESAME
storelocation = http://localhost:8080/openrdf-sesame
storerepository = <projectname>

Sesame [http://www.openrdf.org/index.jsp] is a framework and a set of java web applications that normally runs within a Tomcat application server. If you’re comfortable with Tomcat and servlet containers you can get started with this quickly, see their installation instructions [http://www.openrdf.org/doc/sesame2/users/ch06.html]. You’ll need to install both the actual Sesame Server and the OpenRDF workbench.

After installing it and configuring ferenda.ini to use it, you’ll need to use the OpenRDF workbench app (at http://localhost:8080/openrdf-workbench by default) to create a new repository. The recommended settings are:

Type: Native Java store
ID: <projectname> # eg same as storerepository in ferenda.ini
Title: Ferenda repository for <projectname>
Triple indexes: spoc,posc,cspo,opsc,psoc

It’s much faster than the RDFLib-based stores and is fairly stable (although Ferenda’s usage patterns seem to sometimes make simple operations take a disproportionate amount of time).

Fuseki

In ferenda.ini:

[__root__]
storetype = SESAME
storelocation = http://localhost:3030
storerepository = ds

Fuseki [http://jena.apache.org/documentation/serving_data/] is a simple java server that implements most SPARQL standards and can be run without any complicated setup [http://jena.apache.org/documentation/serving_data/#getting-started-with-fuseki]. It can keep data purely in memory or store it on disk. The above configuration works with the default configuration of Fuseki - just download it and run fuseki-server

Fuseki seems to be the fastest triple store that Ferenda supports, at least with Ferendas usage patterns. Since it’s also the easiest to set up, it’s the recommended triple store once RDFLib + SQLite isn’t enough.

Fulltext search engines

There are two choices.

Whoosh

In ferenda.ini:

[__root__]
indextype = WHOOSH
indexlocation = data/whooshindex

Whoosh is an embedded python fulltext search engine, which requires no setup (it’s automatically installed when installing ferenda with pip or easy_install), works reasonably well with small to medium amounts of data, and performs quick searches. However, once the index grows beyond a few hundred MB, indexing of new material begins to slow down.

Elasticsearch

In ferenda.ini:

[__root__]
indextype = ELASTICSEARCH
indexlocation = http://localhost:9200/ferenda/

Elasticsearch is a distributed fulltext search engine in java which can run in a distributed fashion and which is accessed through a simple JSON/REST API. It’s easy to setup – just download it and run bin/elasticsearch as per the instructions [http://www.elasticsearch.org/guide/reference/setup/installation/]. Ferenda’s support for Elasticsearch is new and not yet stable, but it should be able to handle much larger amounts of data.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 Testing your docrepo

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Testing your docrepo

The module ferenda.testutil contains an assortment of
classes and functions that can be useful when testing code written
against the Ferenda API.

Extra assert methods

The FerendaTestCase is intended to be
used by your unittest.TestCase [http://docs.python.org/3/library/unittest.html#unittest.TestCase] based testcases. Your
testcase inherits from both TestCase and FerendaTestCase, and
thus gains new assert methods:

	Method
	Description

	assertEqualGraphs()
	Compares two

 Advanced topics

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

Advanced topics

Composite docrepos

In some cases, a document collection may available from multiple
sources, with varying degrees of completeness and/or quality. For
example, in a collection of US patents, some patents may be available
in structured XML with good metadata through a easy-to-use API, some
in tag-soup style HTML with no metadata, requiring screenscraping, and
some in the form of TIFF files that you scanned yourself. The
implementation of both download() and parse() will differ wildly for
these sources. You’ll have something like this:

from ferenda import DocumentRepository, CompositeRepository
from ferenda.decorators import managedparsing

class XMLPatents(DocumentRepository):
 alias = "patxml"

 def download(self, basefile = None):
 download_from_api()

 @managedparsing
 def parse(self,doc):
 return self.transform_patent_xml_to_xhtml(doc)

class HTMLPatents(DocumentRepository):
 alias = "pathtml"

 def download(self, basefile=None):
 screenscrape()

 @managedparsing
 def parse(self,doc):
 return self.analyze_tagsoup(doc)

class ScannedPatents(DocumentRepository):
 alias = "patscan"

 # Assume that we, when we scanned the documents, placed them in their
 # correct place under data/patscan/downloaded

 def download(self, basefile=None): pass

 @managedparsing
 def parse(self,doc):
 x = self.ocr_and_structure(doc)
 return True

But since the result of all three parse() implementations are
XHTML1.1+RDFa documents (possibly with varying degrees of data
fidelity), the implementation of generate() will be substantially the
same. Furthermore, you probably want to present a unified document
collection to the end user, presenting documents derived from
structured XML if they’re available, documents derived from tagsoup
HTML if an XML version wasn’t available, and finally documents derived
from your scanned documents if nothing else is available.

The class CompositeRepository makes this
possible. You specify a number of subordinate docrepo classes using
the subrepos class property.

class CompositePatents(CompositeRepository):
 alias = "pat"
 # Specify the classes in order of preference for parsed documents.
 # Only if XMLPatents does not have a specific patent will HTMLPatents
 # get the chance to provide it through it's parse method
 subrepos = XMLPatents, HTMLPatents, ScannedPatents

 def generate(self, basefile, otherrepos=[]):
 # Optional code to transform parsed XHTML1.1+RDFa documents
 # into browser-ready HTML5, regardless of wheter these are
 # derived from structured XML, tagsoup HTML or scanned
 # TIFFs. If your parse() method can make these parsed
 # documents sufficiently alike and generic, you might not need
 # to implement this method at all.
 self.do_the_work(basefile)

The CompositeRepository docrepo then acts as a proxy for all of your
specialized repositories:

$./ferenda-build.py patents.CompositePatents enable
calls download() for all subrepos
$./ferenda-build.py pat download
selects the best subrepo that has patent 5,723,765, calls parse()
for that, then copies the result to pat/parsed/ 5723765 (or links)
$./ferenda-build.py pat parse 5723765
uses the pat/parsed/5723765 data. From here on, we're just like any
other docrepo.
$./ferenda-build.py pat generate 5723765

Note that patents.XMLPatents and the other subrepos are never
registered in ferenda.ini``. They’re just called behind-the-scenes by
patents.CompositePatents.

Patch files

It is not uncommon that source documents in a document repository
contains formatting irregularities, sensitive information that must be
redacted, or just outright errors. In some cases, your parse
implementation can detect and correct these things, but in other
cases, the irregularities are so uncommon or unique that this is not
possible to do in a general way.

As an alternative, you can patch the source document (or it’s
intermediate representation) before the main part of your parsing
logic.

The method patch_if_needed()
automates most of this work for you. It expects a basefile and the
corresponding source document as a string, looks in a patch
directory for a corresponding patch file, and applies it if found.

By default, the patch directory is alongside the data directory. The
patch file for document foo in repository bar should be placed in
patches/bar/foo.patch. An optional description of the patch (as a
plaintext, UTF-8 encoded file) can be placed in
patches/bar/foo.desc.

patch_if_needed() returns a tuple
(text, description). If there was no available patch, text is
identical to the text passed in and description is None. If there was
a patch available and it applied cleanly, text is the patched text and
description is a description of the patch (or “(No patch description
available)”). If there was a patch, but it didn’t apply cleanly, a
PatchError is raised.

Note

There is a mkpatch command in the Devel class which aims to
automate the creation of patch files. It does not work at the
moment.

External annotations

Ferenda contains a general docrepo class that fetches data from a
separate MediaWiki server and stores this as annotations/descriptions
related to the documents in your main docrepos. This makes it possible
to present a source document and commentary on it (including
annotations about individual sections) side-by-side.

See ferenda.sources.general.MediaWiki

Keyword hubs

Ferenda also contains a general docrepo class that lists all keywords
used by documents in your main docrepos (by default, it looks for all
dcterms:subject properties used in any document) and generate
documents for each of them. These documents have no content of their
own, but act as hub pages that list all documents that use a certain
keyword in one place.

When used together with the MediaWiki module above, this makes it
possible to write editorial descriptions about each keyword used, that
is presented alongside the list of documents that use that keyword.

See ferenda.sources.general.Keyword

Custom common data

In many cases, you want to describe documents using references to
other things that are not documents, but which should be named using
URIs rather than plain text literals. This includes things like
companies, publishing entities, print series and abstract things like
the topic/keyword of a document. You can define a RDF graph containing
more information about each such thing that you know of beforehand, eg
if we want to model that some RFCs are published in the Internet
Architecture Board (IAB) stream, we can define the following small
graph:

<http://localhost:8000/ext/iab> a foaf:Organization;
 foaf:name "Internet Architecture Board (IAB)";
 skos:altLabel "IAB";
 foaf:homepage <https://www.iab.org/> .

If this is placed in res/extra/[alias].ttl, eg
res/extra/rfc.ttl, the graph is made available as
commondata, and is also
provided as the third resource_graph argument to any selector/key
functions of your Facet objects.

Custom ontologies

Some parts of ferenda, notably The ReST API for querying, can make use of
ontologies that your docrepo uses. This is so far only used to provide
human-readable descriptions of predicates used (as determined by
rdfs:label or rdfs:comment). Ferenda will try to find an
ontology for any namespace you use in
namespaces, and directly
supports many common vocabularies (bibo, dc, dcterms,
foaf, prov, rdf, rdfs, schema and skos). If
you have defined your own custom ontology, place it (in Turtle format)
as res/vocab/[alias].ttl, eg. res/vocab/rfc.ttl to make
Ferenda read it.

Parallel processing

It’s common to use ferenda with document collections with tens of
thousands of documents. If a single document takes a second to parse,
it means the entire document collection will take three hours or more,
which is not ideal for quick turnaround. Ferenda, and in particular
the ferenda-build.py tool, can run tasks in parallel to speed
things up.

Multiprocessing on a single machine

The simplest way of speeding up processing is to use the processes
parameter, eg:

./ferenda-build.py rfc parse --all --processes=4

This will create 4 processes (started by a fifth control proccess),
each processing individual documents as instructed by the control
process. As a rule of thumb, you should create as many processes as
you have CPU cores.

Distributed processing

A more complex, but also more scalable way, is to set up a bunch of
computers acting as processing clients, together with a main (control)
system. Each of these clients must have access to the same code and
data directory as the main system (ie they should all mount the same
network file system). On each client, you then run (assuming that your
main system has the IP address 192.168.1.42, and that this particular
client has 4 CPU cores):

./ferenda-build.py all buildclient --serverhost=192.168.1.42 --processes=4

On the main system, you first start a message queue with:

./ferenda-build.py all buildqueue

Then you can run ferenda-build.py as normal but with the buildqueue
parameter, eg:

./ferenda-build rfc parse --all --buildqueue

This will put each file to be processed in the message queue, where
all clients will pick up these jobs and process them.

The clients and the message queue can be kept running indefinitely
(although the clients will need to be restarted when you change the
code that they’re running).

If you’re not running ferenda on windows, you can skip the separate
message queue process. Just start your clients like above, then start
ferenda-build.py on your main system with the buildserver parameter,
eg:

./ferenda-build.py rfc parse --all --buildserver

This sets up a temporary in-subprocess message queue that your clients
will connect to as soon as it’s up.

Note

Because of reasons, this in-subprocess queue does not work on
Windows. On that platform you’ll need to run the message queue
separately, as described initially.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 The DocumentRepository class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The DocumentRepository class

	
class ferenda.DocumentRepository(config=None, **kwargs)

	Base class for downloading, parsing and generating HTML versions of a repository of documents.

Start building your application by subclassing this class, and
then override methods in order to customize the downloading,
parsing and generation behaviour.

	Parameters:	**kwargs – Any named argument overrides any
similarly-named configuration file parameter.

Example:

>>> class MyRepo(DocumentRepository):
... alias="myrepo"
...
>>> d = MyRepo(datadir="/tmp/ferenda")
>>> d.store.downloaded_path("mybasefile").replace(os.sep,'/')
'/tmp/ferenda/myrepo/downloaded/mybasefile.html'

Note

This class has a ridiculous amount of properties and methods
that you can override to control most of Ferendas behaviour in
all stages. For basic usage, you need only a fraction of
them. Please don’t be intimidated/horrified.

	
downloaded_suffix = '.html'

	File suffix for the main document format. Determines the suffix
of downloaded files.

	
storage_policy = 'file'

	Some repositories have documents in several formats, documents
split amongst several files or embedded resources. If
storage_policy is set to dir, then each document gets its own
directory (the default filename being index +suffix),
otherwise each doc gets stored as a file in a directory with other
files. Affects
ferenda.DocumentStore.path() (and therefore
all other *_path methods)

	
alias = 'base'

	A short name for the class, used by the command line
ferenda-build.py tool. Also determines where to store
downloaded, parsed and generated files. When you subclass
DocumentRepository you must override
this.

	
namespaces = ['rdf', 'rdfs', 'xsd', 'xsi', 'dcterms', 'skos', 'foaf', 'xhv', 'owl', 'prov', 'bibo']

	The namespaces that are included in the XHTML and RDF files
generated by parse(). This
can be a list of strings, in which case the strings are assumed to
be well-known prefixes to established namespaces, or a list of
(prefix, namespace) tuples. All well-known prefixes are available
in ferenda.util.ns.

If you specify a namespace for a well-known ontology/vocabulary,
that onlology will be available as a

 The Document class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The Document class

	
class ferenda.Document(meta=None, body=None, uri=None, lang=None, basefile=None)

	A document represents the content of a document together with a
RDF graph containing metadata about the document. Don’t create
instances of Document directly. Create them
through make_document() in order
to properly initialize the meta property.

	Parameters:	
	meta – A RDF graph containing metadata about the document

	body – A list of ferenda.elements based objects representing the content of the document

	uri – The canonical URI for this document

	lang – The main language of the document as a IETF language tag, i.e. “sv” or “en-GB”

	basefile – The basefile of the document

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 The DocumentEntry class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The DocumentEntry class

	
class ferenda.DocumentEntry(path=None)

	This class has two primary uses – it is used to represent and store
aspects of the downloading of each document (when it was initially
downloaded, optionally updated, and last checked, as well as the URL
from which it was downloaded). It’s also used by the news_* methods
to encapsulate various aspects of a document entry in an atom
feed. Some properties and methods are used by both of these use
cases, but not all.

	Parameters:	path (str [http://docs.python.org/3/library/stdtypes.html#str]) – If this file path is an existing JSON file, the object is
initialized from that file.

	
orig_created = None

	The first time we fetched the document from it’s original location.

	
id = None

	The canonical uri for the document.

	
basefile = None

	The basefile for the document.

	
orig_updated = None

	The last time the content at the original location of the
document was changed.

	
orig_checked = None

	The last time we accessed the original location of this
document, regardless of wheter this led to an update.

	
orig_url = None

	The main url from where we fetched this document.

	
indexed_ts = None

	The last time the metadata was indexed in a triplestore

	
indexed_dep = None

	The last time the dependent files of the document was indexed

	
indexed_ft = None

	The last time the document was indexed in a fulltext index

	
published = None

	The date our parsed/processed version of the document was published.

	
updated = None

	The last time our parsed/processed version changed in any way
(due to the original content being updated, or due to changes
in our parsing functionality.

	
title = None

	A title/label for the document, as used in an Atom feed.

	
summary = None

	A summary of the document, as used in an Atom feed.

	
url = None

	The URL to the browser-ready version of the page, equivalent to what
generated_url() returns.

	
content = None

	A dict that represents metadata about the document file.

	
link = None

	A dict that represents metadata about the document RDF metadata
(such as it’s URI, length, MIME-type and MD5 hash).

	
save(path=None)

	Saves the state of the documententry to a JSON file at path. If
path is not provided, uses the path that the object was initialized
with.

	
set_content(filename, url, mimetype=None, inline=False)

	Sets the content property and calculates md5 hash for the file

	Parameters:	
	filename – The full path to the document file

	url – The full external URL that will be used to get the same
document file

	mimetype – The MIME-type used in the atom feed. If not provided,
guess from file extension.

	inline – whether to inline the document content in the file or
refer to url

	
set_link(filename, url, mimetype=None)

	Sets the link property and calculate md5 hash for the RDF metadata.

	Parameters:	
	filename – The full path to the RDF file for a document

	url – The full external URL that will be used to get the same
RDF file

	mimetype – The MIME-type used in the atom feed. If not provided,
guess from file extension.

	
calculate_md5(filename)

	Given a filename, return the md5 value for the file’s content.

	
guess_type(filename)

	Given a filename, return a MIME-type based on the file extension.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 The DocumentStore class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The DocumentStore class

	
class ferenda.DocumentStore(datadir, downloaded_suffix='.html', storage_policy='file')

	Unifies handling of reading and writing of various data files
during the download, parse and generate stages.

	Parameters:	
	datadir (str [http://docs.python.org/3/library/stdtypes.html#str]) – The root directory (including docrepo path
segment) where files are stored.

	downloaded_suffix (str [http://docs.python.org/3/library/stdtypes.html#str]) – File suffix for the main source document
format. Determines the suffix of
downloaded files.

	storage_policy (str [http://docs.python.org/3/library/stdtypes.html#str]) – Some repositories have documents in several
formats, documents split amongst several
files or embedded resources. If
storage_policy is set to dir, then
each document gets its own directory (the
default filename being index +suffix),
otherwise each doc gets stored as a file in
a directory with other files. Affects
path()
(and therefore all other *_path
methods)

	
resourcepath(resourcename)

	

	
path(basefile, maindir, suffix, version=None, attachment=None, storage_policy=None)

	Calculate a full filesystem path for the given parameters.

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile of the resource we’re calculating a filename for

	maindir (str [http://docs.python.org/3/library/stdtypes.html#str]) – The stage of processing, e.g. downloaded or parsed

	suffix – Appropriate file suffix, e.g. .txt or .pdf

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. The archived version id

	attachment (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. Any associated file needed by the main file.

	storage_policy – Optional. Used to override storage_policy if needed

Note

This is a generic method with many parameters. In order to
keep your code tidy and and loosely coupled to the actual
storage policy, you should use methods like
downloaded_path() or parsed_path() when
possible.

Example:

>>> d = DocumentStore(datadir="/tmp/base")
>>> realsep = os.sep
>>> os.sep = "/"
>>> d.path('123/a', 'parsed', '.xhtml') == '/tmp/base/parsed/123/a.xhtml'
True
>>> d.storage_policy = "dir"
>>> d.path('123/a', 'parsed', '.xhtml') == '/tmp/base/parsed/123/a/index.xhtml'
True
>>> d.path('123/a', 'downloaded', None, 'r4711', 'appendix.txt') == '/tmp/base/archive/downloaded/123/a/r4711/appendix.txt'
True
>>> os.sep = realsep

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile for which to calculate the path

	maindir – The processing stage directory (normally downloaded, parsed, or generated)

	suffix (str [http://docs.python.org/3/library/stdtypes.html#str]) – The file extension including period (i.e. .txt, not txt)

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional, the archived version id

	attachment (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. Any associated file needed by the main file. Requires that storage_policy is set to dir. suffix is ignored if this parameter is used.

	Returns:	The full filesystem path

	Return type:	str

	
open(basefile, maindir, suffix, mode='r', version=None, attachment=None)

	Context manager that opens files for reading or writing. The
parameters are the same as for
path(), and the note is
applicable here as well – use
open_downloaded(),
open_parsed() et al if possible.

Example:

>>> store = DocumentStore(datadir="/tmp/base")
>>> with store.open('123/a', 'parsed', '.xhtml', mode="w") as fp:
... res = fp.write("hello world")
>>> os.path.exists("/tmp/base/parsed/123/a.xhtml")
True

	
list_basefiles_for(action, basedir=None)

	Get all available basefiles that can be used for the
specified action.

	Parameters:	
	action (str [http://docs.python.org/3/library/stdtypes.html#str]) – The action for which to get available
basefiles (parse, relate, generate
or news)

	basedir (str [http://docs.python.org/3/library/stdtypes.html#str]) – The base directory in which to search for
available files. If not provided, defaults to
self.datadir.

	Returns:	All available basefiles

	Return type:	generator

	
list_versions(basefile, action=None)

	Get all archived versions of a given basefile.

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile to list archived versions for

	action (str [http://docs.python.org/3/library/stdtypes.html#str]) – The type of file to look for (either
downloaded, parsed or generated. If
None, look for all types.

	Returns:	All available versions for that basefile

	Return type:	generator

	
list_attachments(basefile, action, version=None)

	Get all attachments for a basefile in a specified state

	Parameters:	
	action (str [http://docs.python.org/3/library/stdtypes.html#str]) – The state (type of file) to look for (either
downloaded, parsed or generated. If
None, look for all types.

	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile to list attachments for

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – The version of the basefile to list attachments for. If None, list attachments for the current version.

	Returns:	All available attachments for the basefile

	Return type:	generator

	
basefile_to_pathfrag(basefile)

	Given a basefile, returns a string that can safely be used
as a fragment of the path for any representation of that
file. The default implementation recognizes a number of
characters that are unsafe to use in file names and replaces
them with HTTP percent-style encoding.

Example:

>>> d = DocumentStore("/tmp")
>>> realsep = os.sep
>>> os.sep = "/"
>>> d.basefile_to_pathfrag('1998:204') == '1998/%3A204'
True
>>> os.sep = realsep

If you wish to override how document files are stored in
directories, you can override this method, but you should make
sure to also override
pathfrag_to_basefile() to
work as the inverse of this method.

	Parameters:	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile to encode

	Returns:	The encoded path fragment

	Return type:	str

	
pathfrag_to_basefile(pathfrag)

	Does the inverse of
basefile_to_pathfrag(),
that is, converts a fragment of a file path into the
corresponding basefile.

	Parameters:	pathfrag (str [http://docs.python.org/3/library/stdtypes.html#str]) – The path fragment to decode

	Returns:	The resulting basefile

	Return type:	str

	
archive(basefile, version)

	Moves the current version of a document to an archive. All
files related to the document are moved (downloaded, parsed,
generated files and any existing attachment files).

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile of the document to archive

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – The version id to archive under

	
downloaded_path(basefile, version=None, attachment=None)

	Get the full path for the downloaded file for the given
basefile (and optionally archived version and/or attachment
filename).

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile for which to calculate the path

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. The archived version id

	attachment (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. Any associated file needed by the main file.

	Returns:	The full filesystem path

	Return type:	str

	
open_downloaded(basefile, mode='r', version=None, attachment=None)

	Opens files for reading and writing,
c.f. open(). The parameters are
the same as for
downloaded_path().

	
documententry_path(basefile, version=None)

	Get the full path for the documententry JSON file for the given
basefile (and optionally archived version).

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile for which to calculate the path

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. The archived version id

	Returns:	The full filesystem path

	Return type:	str

	
intermediate_path(basefile, version=None, attachment=None)

	Get the full path for the main intermediate file for the given
basefile (and optionally archived version).

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile for which to calculate the path

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. The archived version id

	attachment – Optional. Any associated file created or retained
in the intermediate step

	Returns:	The full filesystem path

	Return type:	str

	
open_intermediate(basefile, mode='r', version=None, attachment=None)

	Opens files for reading and writing,
c.f. open(). The parameters are
the same as for
intermediate_path().

	
parsed_path(basefile, version=None, attachment=None)

	Get the full path for the parsed XHTML file for the given
basefile.

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile for which to calculate the path

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. The archived version id

	attachment (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. Any associated file needed by the
main file (created by
parse())

	Returns:	The full filesystem path

	Return type:	str

	
open_parsed(basefile, mode='r', version=None, attachment=None)

	Opens files for reading and writing,
c.f. open(). The parameters are
the same as for
parsed_path().

	
serialized_path(basefile, version=None, attachment=None)

	Get the full path for the serialized JSON file for the given
basefile.

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile for which to calculate the path

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. The archived version id

	Returns:	The full filesystem path

	Return type:	str

	
open_serialized(basefile, mode='r', version=None)

	Opens files for reading and writing,
c.f. open(). The parameters are
the same as for
serialized_path().

	
distilled_path(basefile, version=None)

	Get the full path for the distilled RDF/XML file for the given
basefile.

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile for which to calculate the path

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. The archived version id

	Returns:	The full filesystem path

	Return type:	str

	
open_distilled(basefile, mode='r', version=None)

	Opens files for reading and writing,
c.f. open(). The parameters are
the same as for
distilled_path().

	
generated_path(basefile, version=None, attachment=None)

	Get the full path for the generated file for the given
basefile (and optionally archived version and/or attachment
filename).

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile for which to calculate the path

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. The archived version id

	attachment (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. Any associated file needed by the main file.

	Returns:	The full filesystem path

	Return type:	str

	
annotation_path(basefile, version=None)

	Get the full path for the annotation file for the given
basefile (and optionally archived version).

	Parameters:	
	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile for which to calculate the path

	version (str [http://docs.python.org/3/library/stdtypes.html#str]) – Optional. The archived version id

	Returns:	The full filesystem path

	Return type:	str

	
open_annotation(basefile, mode='r', version=None)

	Opens files for reading and writing,
c.f. open(). The parameters are
the same as for
annotation_path().

	
dependencies_path(basefile)

	Get the full path for the dependency file for the given
basefile

	Parameters:	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile for which to calculate the path

	Returns:	The full filesystem path

	Return type:	str

	
open_dependencies(basefile, mode='r')

	Opens files for reading and writing,
c.f. open(). The parameters are
the same as for
dependencies_path().

	
atom_path(basefile)

	Get the full path for the atom file for the given
basefile

Note

This is used by ferenda.DocumentRepository.news() and
does not really operate on “real” basefiles. It might be
removed. You probably shouldn’t use it unless you override
news()

	Parameters:	basefile (str [http://docs.python.org/3/library/stdtypes.html#str]) – The basefile for which to calculate the path

	Returns:	The full filesystem path

	Return type:	str

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 The Facet class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The Facet class

	
class ferenda.Facet(rdftype=rdflib.term.URIRef('http://purl.org/dc/terms/title'), label=None, pagetitle=None, indexingtype=None, selector=None, key=None, identificator=None, toplevel_only=None, use_for_toc=None, use_for_feed=None, selector_descending=None, key_descending=None, multiple_values=None, dimension_type=None, dimension_label=None)

	Create a facet from the given rdftype and some optional parameters.

	Parameters:	
	rdftype (

 The TocPage class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The TocPage class

	
class ferenda.TocPage(linktext, title, binding, value)

	Represents a particular TOC page.

	Parameters:	
	linktext – The text used for TOC links to this page, like “a” or “2013”.

	linktext – str

	label (str [http://docs.python.org/3/library/stdtypes.html#str]) – A description of this page, like “Documents starting with ‘a’”

	binding (str [http://docs.python.org/3/library/stdtypes.html#str]) – The variable binding used for defining this TOC page, like “title” or “issued”

	value (str [http://docs.python.org/3/library/stdtypes.html#str]) – The particular value of bound variable that corresponds to this TOC page, like “a” or “2013”. The selector function of a Facet object is used to select this value out of the raw data.

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 The TocPageset class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The TocPageset class

	
class ferenda.TocPageset(label, pages, predicate=None)

	Represents a particular set of TOC pages, structured around some
particular attribute(s) of documents, like title or publication
date. toc_pagesets() returns
a list of these objects, override that method to provide custom
TocPageset objects.

	Parameters:	
	label (str [http://docs.python.org/3/library/stdtypes.html#str]) – A description of this set of TOC pages, like
“By publication year”

	pages (list [http://docs.python.org/3/library/stdtypes.html#list]) – The set of TocPage objects that makes
up this page set.

	predicate (

 The Feed class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The Feed class

	
class ferenda.Feed(slug, title, binding, value)

	Represents a particular Feed of new or updated items selected by
some criteria.

	Parameters:	
	label (str [http://docs.python.org/3/library/stdtypes.html#str]) – A description of this feed, like “Documents published by XYZ”

	binding (str [http://docs.python.org/3/library/stdtypes.html#str]) – The variable binding used for defining this feed, like
“title” or “issued”

	value (str [http://docs.python.org/3/library/stdtypes.html#str]) – The particular value of bound variable that corresponds to
this TOC page, like “a” or “2013”. The selector
function of a Facet object is used
to select this value out of the raw data.

	
classmethod all(row, entry)

	

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 The Feedset class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The Feedset class

	
class ferenda.Feedset(label, feeds, predicate=None)

	Represents a particular set of feeds, structured around some
ke particular attribute(s) of documents, like title or publication
date.

	Parameters:	
	label (str [http://docs.python.org/3/library/stdtypes.html#str]) – A description of this set of feeds, like “By publisher”

	feeds (list [http://docs.python.org/3/library/stdtypes.html#list]) – The set of Feed objects that makes
up this page set.

	predicate (

 The elements classes

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The elements classes

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 The elements.html classes

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The elements.html classes

The purpose of this module is to provide classes corresponding to
most elements (except <style>, <script> and similar
non-document content elements) and core attributes (except @style
and the %events attributes) of HTML4.01 and HTML5. It is not
totally compliant with the HTML4.01 and HTML5 standards, but is enough
to model most real-world HTML. It contains no provisions to ensure
that elements of a particular kind only contain allowed
sub-elements.

	
ferenda.elements.html.elements_from_soup(soup, remove_tags=('script', 'style', 'font', 'map', 'center'), keep_attributes=('class', 'id', 'dir', 'lang', 'src', 'href', 'name', 'alt'))[source]

	Converts a BeautifulSoup tree into a tree of
ferenda.elements.html.HTMLElement objects. Some
non-semantic attributes and tags are removed in the process.

	Parameters:	
	soup – Soup object to convert

	remove_tags (list [http://docs.python.org/3/library/stdtypes.html#list]) – Tags that should not be included

	keep_attributes (list [http://docs.python.org/3/library/stdtypes.html#list]) – Attributes to keep

	Returns:	tree of element objects

	Return type:	ferenda.elements.html.HTMLElement

	
class ferenda.elements.html.HTMLElement(*args, **kwargs)[source]

	Abstract base class for all elements.

	
class ferenda.elements.html.HTML(*args, **kwargs)[source]

	Element corresponding to the <html> tag

	
class ferenda.elements.html.Head(*args, **kwargs)[source]

	Element corresponding to the <head> tag

	
class ferenda.elements.html.Title(*args, **kwargs)[source]

	Element corresponding to the <title> tag

	
class ferenda.elements.html.Body(*args, **kwargs)[source]

	Element corresponding to the <body> tag

	
as_xhtml(uri, parent_uri=None)[source]

	

	
class ferenda.elements.html.P(*args, **kwargs)[source]

	Element corresponding to the <p> tag

	
class ferenda.elements.html.H1(*args, **kwargs)[source]

	Element corresponding to the <h1> tag

	
class ferenda.elements.html.H2(*args, **kwargs)[source]

	Element corresponding to the <h2> tag

	
class ferenda.elements.html.H3(*args, **kwargs)[source]

	Element corresponding to the <h3> tag

	
class ferenda.elements.html.H4(*args, **kwargs)[source]

	Element corresponding to the <h4> tag

	
class ferenda.elements.html.H5(*args, **kwargs)[source]

	Element corresponding to the <h5> tag

	
class ferenda.elements.html.H6(*args, **kwargs)[source]

	Element corresponding to the <h6> tag

	
class ferenda.elements.html.UL(*args, **kwargs)[source]

	Element corresponding to the tag

	
class ferenda.elements.html.OL(*args, **kwargs)[source]

	Element corresponding to the tag

	
class ferenda.elements.html.LI(*args, **kwargs)[source]

	Element corresponding to the tag

	
class ferenda.elements.html.Pre(*args, **kwargs)[source]

	Element corresponding to the <pre> tag

	
class ferenda.elements.html.DL(*args, **kwargs)[source]

	Element corresponding to the <dl> tag

	
class ferenda.elements.html.DT(*args, **kwargs)[source]

	Element corresponding to the <dt> tag

	
class ferenda.elements.html.DD(*args, **kwargs)[source]

	Element corresponding to the <dd> tag

	
class ferenda.elements.html.Div(*args, **kwargs)[source]

	Element corresponding to the <div> tag

	
class ferenda.elements.html.Blockquote(*args, **kwargs)[source]

	Element corresponding to the <blockquote> tag

	
class ferenda.elements.html.Form(*args, **kwargs)[source]

	Element corresponding to the <form> tag

	
class ferenda.elements.html.HR(*args, **kwargs)[source]

	Element corresponding to the <hr> tag

	
class ferenda.elements.html.Table(*args, **kwargs)[source]

	Element corresponding to the <table> tag

	
class ferenda.elements.html.Fieldset(*args, **kwargs)[source]

	Element corresponding to the <fieldset> tag

	
class ferenda.elements.html.Address(*args, **kwargs)[source]

	Element corresponding to the <address> tag

	
class ferenda.elements.html.TT(*args, **kwargs)[source]

	Element corresponding to the <tt > tag

	
class ferenda.elements.html.I(*args, **kwargs)[source]

	Element corresponding to the <i > tag

	
class ferenda.elements.html.B(*args, **kwargs)[source]

	Element corresponding to the tag

	
class ferenda.elements.html.U(*args, **kwargs)[source]

	Element corresponding to the <u > tag

	
class ferenda.elements.html.Big(*args, **kwargs)[source]

	Element corresponding to the <big > tag

	
class ferenda.elements.html.Small(*args, **kwargs)[source]

	Element corresponding to the <small> tag

	
class ferenda.elements.html.Em(*args, **kwargs)[source]

	Element corresponding to the tag

	
class ferenda.elements.html.Strong(*args, **kwargs)[source]

	Element corresponding to the tag

	
class ferenda.elements.html.Dfn(*args, **kwargs)[source]

	Element corresponding to the <dfn > tag

	
class ferenda.elements.html.Code(*args, **kwargs)[source]

	Element corresponding to the <code > tag

	
class ferenda.elements.html.Samp(*args, **kwargs)[source]

	Element corresponding to the <samp > tag

	
class ferenda.elements.html.Kbd(*args, **kwargs)[source]

	Element corresponding to the <kbd > tag

	
class ferenda.elements.html.Var(*args, **kwargs)[source]

	Element corresponding to the <var > tag

	
class ferenda.elements.html.Cite(*args, **kwargs)[source]

	Element corresponding to the <cite > tag

	
class ferenda.elements.html.Abbr(*args, **kwargs)[source]

	Element corresponding to the <abbr > tag

	
class ferenda.elements.html.Acronym(*args, **kwargs)[source]

	Element corresponding to the <acronym> tag

	
class ferenda.elements.html.A(*args, **kwargs)[source]

	Element corresponding to the <a > tag

	
class ferenda.elements.html.Img(*args, **kwargs)[source]

	Element corresponding to the tag

	
class ferenda.elements.html.Object(*args, **kwargs)[source]

	Element corresponding to the <object > tag

	
class ferenda.elements.html.Br(*args, **kwargs)[source]

	Element corresponding to the
 tag

	
class ferenda.elements.html.Q(*args, **kwargs)[source]

	Element corresponding to the <q > tag

	
class ferenda.elements.html.Sub(*args, **kwargs)[source]

	Element corresponding to the <sub > tag

	
class ferenda.elements.html.Sup(*args, **kwargs)[source]

	Element corresponding to the <sup > tag

	
class ferenda.elements.html.Span(*args, **kwargs)[source]

	Element corresponding to the tag

	
class ferenda.elements.html.BDO(*args, **kwargs)[source]

	Element corresponding to the <bdo> tag

	
class ferenda.elements.html.Input(*args, **kwargs)[source]

	Element corresponding to the <input> tag

	
class ferenda.elements.html.Select(*args, **kwargs)[source]

	Element corresponding to the <select> tag

	
class ferenda.elements.html.Textarea(*args, **kwargs)[source]

	Element corresponding to the <textarea> tag

	
class ferenda.elements.html.Label(*args, **kwargs)[source]

	Element corresponding to the <label> tag

	
class ferenda.elements.html.Button(*args, **kwargs)[source]

	Element corresponding to the <button> tag

	
class ferenda.elements.html.Caption(*args, **kwargs)[source]

	Element corresponding to the <caption> tag

	
class ferenda.elements.html.Thead(*args, **kwargs)[source]

	Element corresponding to the <thead> tag

	
class ferenda.elements.html.Tfoot(*args, **kwargs)[source]

	Element corresponding to the <tfoot> tag

	
class ferenda.elements.html.Tbody(*args, **kwargs)[source]

	Element corresponding to the <tbody> tag

	
class ferenda.elements.html.Colgroup(*args, **kwargs)[source]

	Element corresponding to the <colgroup> tag

	
class ferenda.elements.html.Col(*args, **kwargs)[source]

	Element corresponding to the <col> tag

	
class ferenda.elements.html.TR(*args, **kwargs)[source]

	Element corresponding to the <tr> tag

	
class ferenda.elements.html.TH(*args, **kwargs)[source]

	Element corresponding to the <th> tag

	
class ferenda.elements.html.TD(*args, **kwargs)[source]

	Element corresponding to the <td> tag

	
class ferenda.elements.html.Ins(*args, **kwargs)[source]

	Element corresponding to the <ins> tag

	
class ferenda.elements.html.Del(*args, **kwargs)[source]

	Element corresponding to the tag

	
class ferenda.elements.html.HTML5Element(*args, **kwargs)[source]

	
	
tagname = 'div'

	

	
classname

	

	
class ferenda.elements.html.Article(*args, **kwargs)[source]

	Element corresponding to the <article> tag

	
class ferenda.elements.html.Aside(*args, **kwargs)[source]

	Element corresponding to the <aside> tag

	
class ferenda.elements.html.Bdi(*args, **kwargs)[source]

	Element corresponding to the <bdi> tag

	
class ferenda.elements.html.Details(*args, **kwargs)[source]

	Element corresponding to the <details> tag

	
class ferenda.elements.html.Dialog(*args, **kwargs)[source]

	Element corresponding to the <dialog> tag

	
class ferenda.elements.html.Summary(*args, **kwargs)[source]

	Element corresponding to the <summary> tag

	
class ferenda.elements.html.Figure(*args, **kwargs)[source]

	Element corresponding to the <figure> tag

	
class ferenda.elements.html.Figcaption(*args, **kwargs)[source]

	Element corresponding to the <figcaption> tag

	
class ferenda.elements.html.Footer(*args, **kwargs)[source]

	Element corresponding to the <footer> tag

	
class ferenda.elements.html.Header(*args, **kwargs)[source]

	Element corresponding to the <header> tag

	
class ferenda.elements.html.Hgroup(*args, **kwargs)[source]

	Element corresponding to the <hgroup> tag

	
class ferenda.elements.html.Mark(*args, **kwargs)[source]

	Element corresponding to the <mark> tag

	
class ferenda.elements.html.Meter(*args, **kwargs)[source]

	Element corresponding to the <meter> tag

	
class ferenda.elements.html.Nav(*args, **kwargs)[source]

	Element corresponding to the <nav> tag

	
class ferenda.elements.html.Progress(*args, **kwargs)[source]

	Element corresponding to the <progress> tag

	
class ferenda.elements.html.Ruby(*args, **kwargs)[source]

	Element corresponding to the <ruby> tag

	
class ferenda.elements.html.Rt(*args, **kwargs)[source]

	Element corresponding to the <rt> tag

	
class ferenda.elements.html.Rp(*args, **kwargs)[source]

	Element corresponding to the <rp> tag

	
class ferenda.elements.html.Section(*args, **kwargs)[source]

	Element corresponding to the <section> tag

	
class ferenda.elements.html.Time(*args, **kwargs)[source]

	Element corresponding to the <time> tag

	
class ferenda.elements.html.Wbr(*args, **kwargs)[source]

	Element corresponding to the <wbr> tag

 Copyright 2012-2015, Staffan Malmgren.
 Created using Sphinx 1.2.2.

 The Describer class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ferenda 0.3.0 documentation

The Describer class

	
class ferenda.Describer(graph=None, about=None, base=None)

	Extends the utility class

 The Transformer class

 Navigation

 	
