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The PDFReader class¶

	
class ferenda.PDFReader(*args, **kwargs)¶
	Parses PDF files and makes the content available as a object
hierarchy. After calling read(), the
PDFReader itself is a list of ferenda.pdfreader.Page
objects, which each is a list of
ferenda.pdfreader.Textbox objects, which each is a
list of ferenda.pdfreader.Textelement objects.


Note

This class depends on the command line tool pdftohtml from
poppler.

The class can also handle any other type of document (such as
Word/OOXML/WordPerfect/RTF) that OpenOffice or LibreOffice
handles by first converting it to PDF using the soffice
command line tool (which then must be in your $PATH).

If the PDF contains only scanned pages (without any OCR
information), the pages can be run through the tesseract
command line tool (which, again, needs to be in your
$PATH). You need to provide the main language of the
document as the ocr_lang parameter, and you need to have
installed the tesseract language files for that language.



	
tagname = u'div'¶
	



	
classname = u'pdfreader'¶
	



	
read(pdffile, workdir, images=True, convert_to_pdf=False, keep_xml=True, ocr_lang=None)¶
	Initializes a PDFReader object from an existing PDF file. After
initialization, the PDFReader contains a list of
Page objects.

	Parameters:		pdffile – The full path to the PDF file (or, if
convert_to_pdf is set, any other document
file)
	workdir – A directory where intermediate files (particularly
background PNG files) are stored
	convert_to_pdf (bool) – If pdffile is any other type of
document other than PDF, attempt to
first convert it to PDF using the
soffice command line tool (from
OpenOffice/LibreOffice).
	keep_xml (bool) – If False, remove the intermediate XML
representation of the PDF that gets created
in workdir. If true, keep it around to
speed up subsequent parsing operations. If
set to the special value "bz2", keep it
but compress it with bz2.
	ocr_lang – If provided, PDFReader will extract scanned
images from the PDF file, and run an OCR
program on it, using the ocr_lang
language heuristics. (Note that this is not
neccessarily an IETF language tag like “sv”
or “en-GB”, but rather whatever the
underlying tesseract program uses).
	ocr_lang – str









	
is_empty()¶
	



	
textboxes(gluefunc=None, pageobjects=False, keepempty=False)¶
	Return an iterator of the textboxes available.

gluefunc should be a callable that is called with
(textbox, nextbox, prevbox), and returns True iff nextbox
should be appended to textbox.

If pageobjects, the iterator can return Page objects to
signal that pagebreak has ocurred (these Page objects may or
may not have Textbox elements).

If keepempty, process and return textboxes that have no
text content (these are filtered out by default)





	
drawboxes(outfile, gluefunc=None)¶
	Create a copy of the parsed PDF file, but with the textboxes
created by gluefunc clearly marked. Returns the name of
the created pdf file.

..note:

This requires PyPDF2 and reportlab, which aren't installed
by default (and at least reportlab is not py3 compatible).









	
static re_dimensions()¶
	search(string[, pos[, endpos]]) –> match object or None.
Scan through string looking for a match, and return a corresponding
match object instance. Return None if no position in the string matches.





	
median_box_width(threshold=0)¶
	Returns the median box width of all pages.









	
class ferenda.pdfreader.Page(*args, **kwargs)[source]¶
	Represents a Page in a PDF file. Has width and height properties.

	
tagname = u'div'¶
	



	
classname = u'pdfpage'¶
	



	
id[source]¶
	



	
boundingbox(top=0, left=0, bottom=None, right=None)[source]¶
	A generator of ferenda.pdfreader.Textbox objects that
fit into the bounding box specified by the parameters.





	
crop(top=0, left=0, bottom=None, right=None)[source]¶
	Removes any ferenda.pdfreader.Textbox objects that does not fit within the bounding box specified by the parameters.









	
class ferenda.pdfreader.Textbox(*args, **kwargs)[source]¶
	A textbox is a amount of text on a PDF page, with top, left,
width and height properties that specifies the bounding box of the
text. The font property specifies the id of font used (use
getfont() to get a dict of all
font properties). A textbox consists of a list of Textelements which
may differ in basic formatting (bold and or italics), but otherwise
all text in a Textbox has the same font and size.

	
tagname = u'p'¶
	



	
classname = u'textbox'¶
	



	
as_xhtml(uri)[source]¶
	



	
getfont()[source]¶
	Returns a fontspec dict of all properties of the font used.









	
class ferenda.pdfreader.Textelement(*args, **kwargs)[source]¶
	Represent a single part of text where each letter has the exact
same formatting. The tag property specifies whether the text
as a whole is bold ('b') , italic('i' bold + italic
('bi') or regular (None).

	
tagname¶
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