

 Ferenda

 	Introduction to Ferenda	Example
	Prerequisites
	Installing
	Features
	Next step

	First steps	Creating a Document repository class
	Using ferenda-build.py and registering docrepo classes
	Downloading
	Parsing
	Republishing the parsed content

	Creating your own document repositories	Writing your own download implementation
	Writing your own parse implementation
	Calling relate()
	Calling makeresources()
	Customizing generate()
	Customizing toc()
	Customizing news()
	Customizing frontpage()
	Next steps

	Key concepts	Project
	Configuration
	DocumentRepository
	Document
	Identifiers
	DocumentEntry
	File storage

	Parsing and representing document metadata	Document URI
	Adding metadata using the RDFLib API
	A simpler way of adding metadata
	Vocabularies
	Serialization of metadata
	Metadata about parts of the document

	Building structured documents	Creating your own element classes
	Mixin classes
	Rendering to XHTML
	Convenience methods

	Parsing document structure	FSMParser
	A simple example
	Writing complex parsers
	Tips for debugging your parser

	Citation parsing	The built-in solution
	Extending the built-in support
	Rolling your own

	Grouping documents with facets	Contexts where facets are used
	Grouping a document in several groups
	Combining facets from different docrepos

	Customizing the table(s) of content	Defining facets for grouping and sorting
	Getting information about all documents
	Making the TOC pages
	The first page

	Customizing the news feeds
	The WSGI app	Running the web application
	URLs for retrieving resources

	The ReST API for querying	Free text queries
	Result lists
	Parameters
	Paging
	Statistics
	Ranges
	Support resources
	Legacy mode

	Setting up external databases	Triple stores
	Fulltext search engines

	Advanced topics	Composite docrepos
	Patch files
	External annotations
	Keyword hubs
	Custom common data
	Custom ontologies

	The DocumentRepository class
	The Document class
	The DocumentEntry class
	The DocumentStore class
	The Facet class
	The TocPage class
	The TocPageset class
	The NewsCriteria class
	The LayeredConfig class
	The elements classes
	The elements.html classes
	The Describer class
	The Transformer class
	The FSMParser class
	The CitationParser class
	The URIFormatter class
	The TripleStore class
	The FulltextIndex class	Datatype field classes
	Search field classes

	The TextReader class
	The PDFReader class
	The WordReader class

	The util module
	The citationpatterns module
	The uriformats module
	The manager module
	The testutil module

	Decorators

	Errors

	ferenda.sources.general.Static – generate documents from your own .rst files
	ferenda.sources.general.Keyword – generate documents for keywords used by document in other docrepos
	ferenda.sources.general.MediaWiki – pull in commentary on documents and keywords from a MediaWiki instance
	ferenda.sources.general.Skeleton – generate skeleton documents for references from other documents
	ferenda.sources.tech – repositories for technical standards	W3Standards
	RFC

	ferenda.sources.legal.eu – repositories for EU law	EurlexTreaties
	EurlexCaselaw

	ferenda.sources.legal.se – repositories for Swedish law	ARN
	Direktiv
	Ds
	DV
	JK
	JO
	Kommitte
	MyndFskr
	Propositioner
	SFS

	The Devel class

 Ferenda

 	Docs »
	The PDFReader class
	

 Edit on GitHub

The PDFReader class¶

	
class ferenda.PDFReader(*args, **kwargs)¶
	Parses PDF files and makes the content available as a object
hierarchy. After calling read(), the
PDFReader itself is a list of ferenda.pdfreader.Page
objects, which each is a list of
ferenda.pdfreader.Textbox objects, which each is a
list of ferenda.pdfreader.Textelement objects.

Note

This class depends on the command line tool pdftohtml from
poppler.

The class can also handle any other type of document (such as
Word/OOXML/WordPerfect/RTF) that OpenOffice or LibreOffice
handles by first converting it to PDF using the soffice
command line tool (which then must be in your $PATH).

If the PDF contains only scanned pages (without any OCR
information), the pages can be run through the tesseract
command line tool (which, again, needs to be in your
$PATH). You need to provide the main language of the
document as the ocr_lang parameter, and you need to have
installed the tesseract language files for that language.

	
tagname = u'div'¶
	

	
classname = u'pdfreader'¶
	

	
read(pdffile, workdir, images=True, convert_to_pdf=False, keep_xml=True, ocr_lang=None)¶
	Initializes a PDFReader object from an existing PDF file. After
initialization, the PDFReader contains a list of
Page objects.

	Parameters:		pdffile – The full path to the PDF file (or, if
convert_to_pdf is set, any other document
file)
	workdir – A directory where intermediate files (particularly
background PNG files) are stored
	convert_to_pdf (bool) – If pdffile is any other type of
document other than PDF, attempt to
first convert it to PDF using the
soffice command line tool (from
OpenOffice/LibreOffice).
	keep_xml (bool) – If False, remove the intermediate XML
representation of the PDF that gets created
in workdir. If true, keep it around to
speed up subsequent parsing operations. If
set to the special value "bz2", keep it
but compress it with bz2.
	ocr_lang – If provided, PDFReader will extract scanned
images from the PDF file, and run an OCR
program on it, using the ocr_lang
language heuristics. (Note that this is not
neccessarily an IETF language tag like “sv”
or “en-GB”, but rather whatever the
underlying tesseract program uses).
	ocr_lang – str

	
is_empty()¶
	

	
textboxes(gluefunc=None, pageobjects=False, keepempty=False)¶
	Return an iterator of the textboxes available.

gluefunc should be a callable that is called with
(textbox, nextbox, prevbox), and returns True iff nextbox
should be appended to textbox.

If pageobjects, the iterator can return Page objects to
signal that pagebreak has ocurred (these Page objects may or
may not have Textbox elements).

If keepempty, process and return textboxes that have no
text content (these are filtered out by default)

	
drawboxes(outfile, gluefunc=None)¶
	Create a copy of the parsed PDF file, but with the textboxes
created by gluefunc clearly marked. Returns the name of
the created pdf file.

..note:

This requires PyPDF2 and reportlab, which aren't installed
by default (and at least reportlab is not py3 compatible).

	
static re_dimensions()¶
	search(string[, pos[, endpos]]) –> match object or None.
Scan through string looking for a match, and return a corresponding
match object instance. Return None if no position in the string matches.

	
median_box_width(threshold=0)¶
	Returns the median box width of all pages.

	
class ferenda.pdfreader.Page(*args, **kwargs)[source]¶
	Represents a Page in a PDF file. Has width and height properties.

	
tagname = u'div'¶
	

	
classname = u'pdfpage'¶
	

	
id[source]¶
	

	
boundingbox(top=0, left=0, bottom=None, right=None)[source]¶
	A generator of ferenda.pdfreader.Textbox objects that
fit into the bounding box specified by the parameters.

	
crop(top=0, left=0, bottom=None, right=None)[source]¶
	Removes any ferenda.pdfreader.Textbox objects that does not fit within the bounding box specified by the parameters.

	
class ferenda.pdfreader.Textbox(*args, **kwargs)[source]¶
	A textbox is a amount of text on a PDF page, with top, left,
width and height properties that specifies the bounding box of the
text. The font property specifies the id of font used (use
getfont() to get a dict of all
font properties). A textbox consists of a list of Textelements which
may differ in basic formatting (bold and or italics), but otherwise
all text in a Textbox has the same font and size.

	
tagname = u'p'¶
	

	
classname = u'textbox'¶
	

	
as_xhtml(uri)[source]¶
	

	
getfont()[source]¶
	Returns a fontspec dict of all properties of the font used.

	
class ferenda.pdfreader.Textelement(*args, **kwargs)[source]¶
	Represent a single part of text where each letter has the exact
same formatting. The tag property specifies whether the text
as a whole is bold ('b') , italic('i' bold + italic
('bi') or regular (None).

	
tagname¶
	

 Next

 Previous

 © Copyright 2012-2014, Staffan Malmgren.

 Sphinx theme provided by Read the Docs

 Read the Docs
 v: v0.2.0

 	Versions
	latest
	v0.2.0
	v0.1.7

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

 Free document hosting provided by Read the Docs.

