

 Ferenda

 latest

 	Introduction to Ferenda
	First steps
	Creating your own document repositories
	Key concepts
	Parsing and representing document metadata
	Building structured documents
	Parsing document structure
	Citation parsing
	Reading files in various formats
	Grouping documents with facets
	Customizing the table(s) of content
	Customizing the news feeds
	The WSGI app
	The ReST API for querying
	Setting up external databases
	Testing your docrepo
	Advanced topics

	The DocumentRepository class
	The Document class
	The DocumentEntry class
	The DocumentStore class
	The Facet class
	The ResourceLoader class
	The TocPage class
	The TocPageset class
	The Feed class
	The Feedset class
	The elements classes
	The elements.html classes
	The Describer class
	The Transformer class
	The FSMParser class
	The CitationParser class
	The URIFormatter class
	The TripleStore class
	The FulltextIndex class
	The TextReader class
	The PDFReader class
	The PDFAnalyzer class
	The WordReader class
	The WSGIApp class
	The Resources class
	The CompositeRepository class

	The util module
	The citationpatterns module
	The uriformats module
	The manager module
	The testutil module

	Decorators

	Errors

	ferenda.sources.general.Keyword – generate documents for keywords used by document in other docrepos
	ferenda.sources.general.MediaWiki – pull in commentary on documents and keywords from a MediaWiki instance
	ferenda.sources.general.Sitenews – Generate a set of news documents from a single text file
	ferenda.sources.general.Skeleton – generate skeleton documents for references from other documents
	ferenda.sources.general.Static – generate documents from your own .rst files
	ferenda.sources.tech – repositories for technical standards
	ferenda.sources.legal.eu – repositories for EU law
	ferenda.sources.legal.se – repositories for Swedish law
	The Devel class

	0.3.0 (released 2015-02-18)
	0.2.0 (released 2014-07-23)
	0.1.7 (released 2014-04-22)
	0.1.6.1 (released 2013-11-13)
	0.1.6 (released 2013-11-13)
	0.1.5 (released 2013-09-29)
	0.1.4 (released 2013-08-26)
	0.1.3 (released 2013-08-11)
	0.1.2 (released 2013-08-02)
	0.1.1 (released 2013-07-27)
	0.1.0 (released 2013-07-26)

 Ferenda

 	Docs »
	The PDFAnalyzer class
	

 Edit on GitHub

The PDFAnalyzer class¶

	
class ferenda.PDFAnalyzer(pdf)[source]¶
	Create a analyzer for the given pdf file.

The primary purpose of an analyzer is to determine margins and
other spatial metrics of a document, and identifiy common
typographic styles for default text, title and headings. This
is done by calling the metrics()
method.

The analysis is done in several steps. The properties of all
textboxes on each page is collected in several
collections.Counter objects. These counters are then
statistically analyzed in a series of functions to yield these
metrics.

If different analyzis logic, or additional metrics, are desired,
this class should be inherited and some methods/properties
overridden.

	Parameters:	pdf (ferenda.PDFReader) – The pdf file to analyze.

	
twopage = True¶
	Whether or not the document is expected to have different margins
depending on whether it’s a even or odd page.

	
style_significance_threshold = 0.005¶
	“The amount of use (as compared to the rest of the document that a
style must have to be considered significant.

	
header_significance_threshold = 0.002¶
	The maximum amount (expressed as part of the entire text amount) of
text that can occur on the top of the page for it to be considered
part of the header.

	
footer_significance_threshold = 0.002¶
	The maximum amount (expressed as part of the entire text amount) of
text that can occur on the bottom of the page for it to be
considered part of the footer.

	
pagination_min_size = 6¶
	The minimum size (in points) that a page number can be. Used to
distinguish page numbers from footnote numbers, which are typically
set in miniscule sizes.

	
documents¶
	Attempts to distinguish different logical document (eg parts with
differing pagesizes/margins/styles etc) within this PDF.

You should override this method if you want to provide your
own document segmentation logic.

	Returns:	Tuples (startpage, pagecount, tag) for the different identified
documents
	Return type:	list

	
paginate(paginatepath=None, force=False)[source]¶
	Attempt to identify the real page number from pagination numbers on the page

	
guess_pagenumber(page, probable_pagenumber=1)[source]¶
	

	
guess_pagenumber_candidates(page, probable_pagenumber)[source]¶
	

	
guess_pagenumber_boxes(page)[source]¶
	Return a suitable number of textboxes to scan for a possible page number.

	
guess_pagenumber_select(candidates, probable_pagenumber)[source]¶
	

	
metrics(metricspath=None, plotpath=None, startpage=0, pagecount=None, force=False)[source]¶
	Calculate and return the metrics for this analyzer.

metrics is a set of named properties in the form of a
dict. The keys of the dict can represent margins or other
measurements of the document (left/right margins,
header/footer etc) or font styles used in the document (eg.
default, title, h1 – h3). Style values are in turn dicts
themselves, with the keys ‘family’ and ‘size’.

	Parameters:		metricspath (str) – The path of a JSON file used as cache for the
calculated metrics
	plotpath (str) – The path to write a PNG file with histograms for
different values (for debugging).
	startpage (int) – starting page for the analysis
	startpage – number of pages to analyze (default: all available)
	force (bool) – Perform analysis even if cached JSON metrics exists.

	Returns:	calculated metrics

	Return type:	dict

The default implementation will try to find out values for the
following metrics:

	key	description
	leftmargin	position of left margin (for odd pages if
twopage = True)
	rightmargin	position of right margin (for odd pages if
twopage = True)
	leftmargin_even	position of left margin for even pages
	rightmargin_even	position of right margin for right pages
	topmargin	position of header zone
	bottommargin	position of footer zone
	default	style used for default text
	title	style used for main document title (on front page)
	h1	style used for level 1 headings
	h2	style used for level 2 headings
	h3	style used for level 3 headings

Subclasses might add (or remove) from the above.

	
textboxes(startpage, pagecount)[source]¶
	Generate a stream of (pagenumber, textbox) tuples consisting of all
pages/textboxes from startpage to pagecount.

	
count_horizontal_margins(startpage, pagecount)[source]¶
	Return a dict of Counter objects for all the horizontally oriented
textbox properties (number of textboxes starting/ending at different
positions).

The set of counters is determined by setup_horizontal_counters.

	
setup_horizontal_counters()[source]¶
	Create initial set of horizontal counters.

	
count_horizontal_textbox(pagenumber, textbox, counters)[source]¶
	Add a single textbox to the set of horizontal counters.

	
count_vertical_margins(startpage, pagecount)[source]¶
	

	
setup_vertical_counters()[source]¶
	

	
count_vertical_textbox(pagenumber, textbox, counters)[source]¶
	

	
count_styles(startpage, pagecount)[source]¶
	

	
count_styles_textbox(pagenumber, textbox, counter)[source]¶
	

	
analyze_vertical_margins(vcounters)[source]¶
	

	
analyze_horizontal_margins(vcounters)[source]¶
	

	
filterdict(counter, filter_func=None)[source]¶
	

	
findmargin(counter, trunc_func=<built-in function round>, quantize=False)[source]¶
	

	
fontsize_key(fonttuple)[source]¶
	

	
fontdict(fonttuple)[source]¶
	

	
analyze_styles(styles)[source]¶
	

	
drawboxes(outfilename, gluefunc=None, startpage=0, pagecount=None, counters=None, metrics=None)[source]¶
	Create a copy of the parsed PDF file, but with the textboxes
created by gluefunc clearly marked, and metrics shown on
the page.

Note

This requires PyPDF2 and reportlab, which aren’t installed
by default. Reportlab (3.*) only works on py27+ and py33+

	
plot(filename, margincounters, stylecounters, metrics)[source]¶
	

	
plot_margins(subplots, margin_counters, metrics, pagewidth, pageheight)[source]¶
	

	
plot_styles(plot, stylecounter, metrics, plt)[source]¶
	

 Next

 Previous

 © Copyright 2012-2015, Staffan Malmgren

 Revision 9c93fedb.

 Built with Sphinx using a theme provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	v0.3.0
	v0.2.0
	v0.1.7
	feature-lagen.nu-parity

 	Downloads
	pdf
	htmlzip
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

 Free document hosting provided by Read the Docs.

